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1 Introduction

Context and Prior results. The resolution of multivariate polynomial
systems is a major issue in many domains as cryptography [12] and robotics
[13] for example. A geometric algebra approach to this NP-Hard problem
is to consider that a system of polynomial equations is associated with an
ideal of K[x1, . . . , xn]. A Gröbner basis of an ideal is essentially an equiva-
lent polynomial system that has a triangular structure which makes it much
easier to solve . This point of view raises questions such as the unique repre-
sentation of a polynomial in the quotient ring K[x1, . . . , xn]/I. The notion
of Gröbner basis also depends on an ordering on monomials. This allows to
de�ne the leading terms of a multivariate polynomial and a division algo-
rithm. The �rst algorithm to compute Gröbner basis have been introduced
by Buchberger in 1965 [4]. His idea was to consider some pairs of polyno-
mials and to consider the reduction of S-polynomials. Later, in 1983, D.
Lazard has proposed an algorithm in [15] to compute Gröbner basis using
tools of computational linear algebra. The linearization of this problem
is made by building a large matrix with entries in K and computing its
echelon form. One of the major result is the Macaulay bound form Lazard
[15], it gives an explicit degree D that majorize the size of the Matrix in
Lazard's algorithm with a hypothesis that the sequence (f1, . . . , fs) is regu-
lar. Another of the hypothesis to use this bound is to work with the grevlex

ordering. The original Lazard's algorithm uses O
((

D+n
n

)ω−1
n
(
D−d+n

n

))
op-

erations in K to compute a Gröbner basis where d is the degree of the
considered polynomials under the above assumption.

By combining the ideas of those two algorithms, Faugère created the
Algorithm F4 in 1998 [9], a new algorithm that performs much better than
the previous ones in practice. In 2002, the Algorithm F5 has been proposed

by Faugère that cost O
((

D+n−1
D

)ω)
operations in K [10] . The advantage

of F5 is that the matrices have full rank generically.
The goal of the internship is to create a version of Lazard's algorithm

that uses univariate matrices with entries in K[xn]. Such matrices are
smaller as one of the variables is in the matrices.

The Popov's forms of univariate matrices are the generalizations of the
row echelon form for matrices with entries in K. For a matrix of degree d
in K[t]r×c, the computation of its Popov form takes O∼(rω−1c(d+amp(s)))
with s a row vector called the shift which is a parameter of the Popov's
form [16, Section 1,Section 5.1]. The price of the computation of Popov's
forms is obviously higher than for the row echelon form but the structure
of the matrices in K[xn] and the distribution of the degree in them o�er a
lot of ideas for some improvements.

As Lazard's Algorithm use the row echelon form, it is natural to consider
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Popov's forms to adapt this algorithm. This idea come from a recent work
by Berthomieu, Neiger and Safey El Din on change of order algorithms
for Gröbner basis [3]. This work go forward the FGLM Algorithm which
change the order of a Gröbner basis by considering a link between the
multiplication matrices and univariate matrices that are in a Popov's form.

Contribution. One of the main results of this internship is the follow-
ing theorem that shows a fundamental relation between Popov's form and
Gröbner basis.

Theorem 1. Let I be an ideal of K[x1, . . . , xn, t], let ≻grlext be the grevlex
ordering on the ring K[x1, . . . , xn, t] and ≻grlex the grevlex ordering on
K[x1, . . . , xn]. Let (g1, . . . , gℓ) be a Gröbner basis of (I,≻grlext). Then the
representative matrix of G is in s-weak-Popov form.

The adaptation of Lazard's algorithm is the Algorithm 4 given in Sec-
tion 4.2 and it uses the s-Popov form with s the shift described in the above
theorem. Finally, the number of operations in K for this new algorithm is
discribed in the following theorem.

Theorem 2. Let F = (f1, . . . , fℓ) be a regular sequence of polynomials in
K[x1, . . . , xn] with deg(fi) = di. Suppose ⟨f1, . . . , fℓ⟩ is zero dimensional.
Write D =

∑ℓ
i=1(di − 1) + 1. The number of operations in K that Algo-

rithm 4 uses is

O∼

(
n

(
D − d+ n− 1

n− 1

)(
D + n− 1

n− 1

)ω−1

(d+D)

)
.

The ratio between the complexity of the classical Lazard's algorithm
above and the new algorithm underneath is nearly dω−1

n
. This improves on

the state of art for families of problems of �xed number of variables and
increasing degree.

Perspectives. There is still some work on this algorithm to do, we have
good reason to think that we could obtain dω−1 as new ratio for future
algorithm. It came from the complexity of s-Popov form when s is zero.
With genericity hypothesis, the shift zero could be used thanks to the row
echeloned by block structure of the Macaulay matrix. Moreover, there
exists some results of complexity that uses the averge degree on columns
which could improve the complexity of Algorithm 4 [19].

Structure of the document. Section 2 is devoted to preliminaries on
polynomial matrices and Gröbner basis. Section 3 introduces di�erent ver-
sions of Lazard's algorithm and its complexity. Section 4 generalizes the
algorithm for polynomial matrices by explaining the link between monomial
ordering and Popov form.
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2 Basic de�nitions and preliminary results

2.1 Echelon forms of matrices over a �eld

For this subsection, we refer the reader to [7] for more details. Let K be
a �eld. The set of matrices over K with r rows and c columns is written
Kr×c.

De�nition 2.1. A matrix M ∈ Kr×c is in row echelon form if
1) Each zero row of the matrix is below all the nonzero rows.
2) On each nonzero row, the leftmost nonzero entry is strictly to the

right of those of the rows above. Those entries are called pivots of
the matrix M .

Moreover, the matrix M is in reduced row echelon form if Items 1) and 2)
hold and

3) In each column that contains a pivot, all entries other than this pivot
are zeros.

4) All pivots are equal to 1.

In particular, a nonzero row vector A = (ai)1≤i≤c ∈ K1×c is in row
echelon form. There exists i0 ∈ {1, . . . , c} such that ai0 is the pivot of A.

By Gaussian elimination, every matrix can be row echelonized.

Proposition-De�nition 2.2. Let M be in Kr×c. There exists a matrix A
in Kr×r invertible such that AM is in row echelon form. In that case, we
call AM a row echelon form of M . If the product AM is in reduced row
echelon form, it is a reduced row echelon form of M .

This theorem can be found in [7, Theorem 1.2].

Theorem 2.3. Let M be in Kr×c. There exists a unique reduced row ech-
elon form of M .

Proposition 2.4. Let M = (mi,j)1≤i≤r,1≤j≤c be in Kr×c and A = (ai)1≤i≤r

be a vector in K1×r. Suppose that the matrix M is in row echelon form. If
the pivot of the vector B = AM = (bj)1≤j≤c is bj0 for some j0 ∈ {1, . . . , c},
then there exists i0 ∈ {1, . . . , r} such that mi0,j0 is a pivot of M .

Proof. For i in {1, . . . , r}, writeMi ∈ K1×c for the i-th row of the matrixM ,
so that AM =

∑r
i=1 aiMi. Let E1 be the subset of {1, . . . , r} that contains

all row indices of pivots of M whose column indices are in {1, . . . , j0 − 1}.
Let E2 be the subset of {1, . . . , r} that contains all row indices of pivots of
M whose column indices are in {j0, . . . , c}. Then we can write :

AM =
∑
i∈E1

aiMi +
∑
i∈E2

aiMi.

By considering the smallest element of E1, and using the fact that pivot
indices inM are increasing, we see that the �rst sum is zero. By considering
the smallest element of E2 and calling it i0, we are done.
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2.2 Hermite forms of polynomial matrices

In this subsection, we introduce some notions about polynomial matrices,
which are matrices with univariate polynomial entries. Let K be a �eld.
We write K[t]r×c the set of univariate polynomial matrices with r rows and
c columns and entries in K[t]. The following de�nition can be found in [17,
De�nition 1].

De�nition 2.5. Let M be in K[t]r×c. The matrix M is said to be in weak-
Hermite form if

1) Each zero row of the matrix is below all the nonzero rows.
2) On each nonzero row, the leftmost nonzero entry is strictly to the

right of those of the rows above. Those entries are called pivots of
the matrix M .

Moreover, the matrix M is in reduced row echelon form if Items 1)
and 2) hold and

3) All other entries on a column that contain a pivot have lower degrees
than the pivot.

4) All pivots are monic.

Note that the name �weak-Hermite� does not appear in the literature,
this has been chosen to make a parallel with Section 2.3.

Example 2.6. The matrix M1 ∈ Q[t]3×4 is in weak-Hermite form:

M1 =

t+ 1 t2 + 2t t2 + 1 7
0 0 2t 4t
0 0 0 t4 − 1


but it is not in Hermite form because neither Item 3) nor Item 4) holds.
Indeed deg(2t) ≤ deg(t2 + 1) and 2t is not monic in the third column.

A square matrix A in K[t]r×r is said to be unimodular if it is invertible
over K[t] (i.e., A−1 has entries in K[t], or equivalently, det(A) ∈ K \ {0}).
It is said to be nonsingular if it is invertible over the �eld of fractions K(t),
or equivalently, if det(A) ∈ K[t] \ {0}.

Proposition-De�nition 2.7. Let M be in K[t]r×c. There exists a uni-
modular matrix A in K[t]r×r such that AM is in weak-Hermite form. In
that case, we call AM a weak-Hermite form of M . If AM is in Hermite
form, it is a Hermite form of M .

Example 2.8. Let M be in Q[t]3×4 and A be in Q[t]3×3:

M =

 t+ 1 t2 + 2t t2 + 1 7
0 0 2t 4t

t2 + t t3 + 2t2 t3 + t t4 + 7t− 1

 and A =

 1 0 0
0 1 0
−t 0 1

 .
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The matrix M is not in weak-Hermite form but:

M1 = AM =

t+ 1 t2 + 2t t2 + 1 7
0 0 2t 4t
0 0 0 t4 − 1


is in weak-Hermite form.

The following theorem can be found in [17, Theorem 1].

Theorem 2.9. Let M be in K[t]r×c. There exists a unique Hermite form
of M .

Example 2.10. The matrix M1 is a weak-Hermite form of M but not the
Hermite form of M . We can get the Hermite form as follows :

M2 =

1 −1
2
t 0

0 1
2

0
0 0 1

t+ 1 t2 + 2t t2 + 1 7
0 0 2t 4t
0 0 0 t4 − 1


=

t+ 1 t2 + 2t 1 −2t2 + 7
0 0 t 2t
0 0 0 t4 − 1

 .

The matrix M2 ∈ Q[t]3×4 is the unique Hermite form of M .

Proposition 2.11. The rows of a matrix M in K[t]r×c generate a K[t]-
submodule of K[t]1×c. If A ∈ K[t]r×r is unimodular, then the rows of AM
generates the same K[t]-submodule as those of M .

Proof. Let N = AM , the rows of N are K[t]-linear combinations of rows of
M . Then the K[t]-submodule generated by the rows of N is included in the
K[t]-submodule generated by the rows of M . We have the other inclusion
by the same argument using A−1N = M , where A−1 ∈ K[t]r×r since the
matrix A is unimodular.

Proposition 2.12. Let M = (mi,j)1≤i≤r,1≤j≤c be in K[t]r×c and A =
(aj)1≤j≤r be in K[t]1×r. Suppose that M is in weak-Hermite form. If the
pivot of the vector B = AM = (bj)1≤j≤c is bj0 for some j0 ∈ {1, . . . , c},
then there exists i0 ∈ {1, . . . , r} such that mi0,j0 is a pivot of M . Moreover,
the inequality deg(bj0) ≥ deg(mi0,j0) holds.

Proof. Using the same arguments as those in the proof of Proposition 2.4,
we get

AM =
∑
i∈E1

aiMi +
∑
i∈E2

aiMi = ai0Mi0 +
∑

i∈E2\{i0}

aiMi,
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where E1 is the subset of {1, . . . , r} that contains all row indices of pivots of
M whose column indices are in {1, . . . , j0−1}, E2 is the subset of {1, . . . , r}
that contains all row indices of pivots of M whose column indices are in
{j0, . . . , c}, and i0 is the smallest element of E2. By de�nition of a pivot
we have that for all i ∈ E2\{i0}, the entry mi,j0 is zero. Then we see that
bj0 = ai0mi0,j0 , hence deg(bj0) = deg(mi0,j0) + deg(ai0).

2.3 Shifted Popov forms of polynomial matrices

For more details on the notion of Popov's forms, we refer the reader to
[16]. Popov's forms are a generalization of Hermite form, in [16, chapter
2] you can see that the Hermite form of a matrix can be seen as a Popov
form. The row echelon form is an essential tool for Lazard's algorithm and
Popov's forms are a generalization of the row echelon form. We can then
establish a relation between Popov's forms and Gröbner basis.

De�nition 2.13. Let M = (mi,j)1≤i≤r,1≤j≤c be in K[t]r×c. The row degree
of M is the vector rdeg0(M) = (d1, . . . , dr) where

di = max
j∈{1,...,c}

(deg(mi,j)) ∈ N ∪ {−∞}.

Example 2.14. Let M2 ∈ Q[t]3×4 be the Hermite form of M :

M2 =

t+ 1 t2 + 2t 1 −2t2 + 7
0 0 t 2t
0 0 0 t4 − 1

 .

The row degree of M2 is the row vector

rdeg0(M) = (2, 1, 4).

De�nition 2.15. Let M be in K[t]r×c. A shift s = (s1, . . . , sc) is an
element of Z1×c. We de�ne amp(s) = max(s1, . . . , sc)−min(s1, . . . , sc).

De�nition 2.16. Let M = (mi,j)1≤i≤r,1≤j≤c be in K[t]r×c and the shift s
in Z1×c. For 1 ≤ i ≤ r, we de�ne di = maxj∈{1,...,c}(deg(mi,j) + sj). The
s-row degree of M is the vector rdegs(M) = (d1, . . . , dr).

Example 2.17. Let s = (4, 2, 0, 1) be a shift,

M2 =

t+ 1 t2 + 2t 1 −2t2 + 7
0 0 t 2t
0 0 0 t4 − 1

 ∈ Q[t]3×4.

The s-row degree of the matrix M2 is the row vector

rdegs(M) = (5, 2, 5).
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De�nition 2.18. Let M = (mi,j)1≤i≤r,1≤j≤c be a matrix in K[t]r×c with ai,j
the leading coe�cient of the polynomial mi,j, let s ∈ Z1×c and rdegs(M) =
(d1, . . . , dr). The leading matrix of M for the shift s is L = LMs(M) =
(ℓi,j)1≤i≤r,1≤j≤c with ℓi,j = 0 if deg(mi,j) + sj < di and ℓi,j = ai,j if
deg(mi,j) + sj = di. For the polynomial 0, the leading coe�cient is 0
by convention.

Example 2.19. Let us consider the shift s = (3, 2, 0, 1) and the matrix

M2 =

t+ 1 t2 + 2t 1 −2t2 + 7
0 0 t 2t
0 0 0 t4 − 1

 .

The s-row degree of M2 for the shift s is the row vector

rdegs(M) = (4, 2, 5).

The leading matrix of M for the shift s is the matrix

LMs(M) =

1 1 0 0
0 0 0 2
0 0 0 1

 .

De�nition 2.20. Let M be in K[t]r×c. If LMs(M) is full rank, then the
matrix M is said to be s-reduced.

De�nition 2.21. Let M = (mi,j)1≤i≤r,1≤j≤c be a matrix in K[t]r×c, M is
said to be in s-weak-Popov form if L = LMs(M) = (ℓi,j)1≤i≤r,1≤j≤c is row
echelonized. If ℓi,j is a pivot of LMs(M), we call the entry mi,j a s-pivot
of M .

De�nition 2.22. The matrix M = (mi,j)1≤i≤r,1≤j≤c is said to be in s-
Popov form with s ∈ Z1×c if

1) The matrix M is in s-weak-Popov form.
2) For each pivot mi,j of M , We have deg(mi,j) > deg(mk,j) for all

indices k in {1, . . . , r}\{i}.
3) All pivots are monic.

Proposition 2.23. Let M be in K[t]r×c and s in Z1×c. There exists a
matrix A in K[t]r×r unimodular such that AM is in s-weak-Popov form.
We call AM a s-weak-Popov form of M . If AM is in s-Popov form, it is
a s-Popov form of M .

The following theorem can be found in [2, page 716 theorem 2.7].

Theorem 2.24. Let M be in K[t]r×c and s ∈ Z1×c. There exists a unique
s-Popov form of M .
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Lemma 2.25. Let M = (mi,j)1≤i≤r,1≤j≤c be a matrix in K[t]r×c and A =
(ai)1≤i≤r a vector in K[t]1×r with A ̸= 0. Suppose that M is in s-weak-
Popov form with s in Z1×c and M has no zero row. Write the vector
B = AM = (bi)1≤i≤c and σ : {1, . . . , r} → {1, . . . , c} the application such
that the entry mi,σ(i) is a s-pivot of M . Let i0 be the smallest integer of the
set

E = {i ∈ {1, . . . , r}|di + deg(ai) = max
k∈{1,...,r}

(dk + deg(ak))}.

Then
(i) The equality

deg(bσ(i0)) = deg(ai0) + deg(mi0,σ(i0)).

(ii) The entry bσ(i0) is the s-pivot of the vector AM .

Proof of Item (i). First, as M and A have no zero row, there exists k in
{1, . . . , r} such that dk+deg(ak) is positive. Thenmaxk∈{1,...,r}(dk+deg(ak))
is positive. Moreover, E ̸= ∅ so i0 is well de�ned. Let us write the s-
row degree rdegs(M) = (d1, . . . dr). By the de�nition of a s-pivot, we
have the equality di = deg(mi,σ(i)) + sσ(i) because M is s-weak Popov.
As bσ(i0) =

∑r
i=1 aimi,σ(i0), then we need to show that for all indices i in

{1, . . . , r}\{i0} :

deg(ai) + deg(mi,σ(i0)) < deg(ai0) + deg(mi0,σ(i0)).

� If i ∈ {i0+1, . . . , r}, then di+deg(ai) ≤ di0 +deg(ai0) because i0 ∈ E
and sσ(i0)+deg(mi,σ(i0)) < di because M is in s-weak-Popov form and
σ(i0) < σ(i). So we can write:

deg(ai) + deg(mi,σ(i0)) + sσ(i0) < deg(ai) + di

≤ deg(ai0) + di0 .

As deg(ai0) + di0 = deg(ai0) + deg(mi0,σ(i0)) + sσ(i0) by the de�nition
of di0 , then :

deg(ai) + deg(mi,σ(i0)) + sσ(i0) < deg(ai0) + deg(mi0,σ(i0)) + sσ(i0)

which implies that

deg(ai) + deg(mi,σ(i0)) < deg(ai0) + deg(mi0,σ(i0)).

� If we have i ∈ {1, . . . , i0−1}, it holds that deg(ai)+di < deg(ai0)+di0
because i is not an element of E as i0 is the smallest integer of E.
By the de�nition of di, it holds that deg(mi,σ(i0)) + si0 ≤ di. So we
can write:

deg(ai) + deg(mi,σ(i0)) + sσ(i0) ≤ deg(ai) + di

< deg(ai0) + di0 .
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As deg(ai0) + di0 = deg(ai0) + deg(mi0,σ(i0)) + sσ(i0), then :

deg(ai) + deg(mi,σ(i0)) + sσ(i0) < deg(ai0) + deg(mi0,σ(i0)) + sσ(i0)

which implies that

deg(ai) + deg(mi,σ(i0)) < deg(ai0) + deg(mi0,σ(i0)).

We deduce that deg(bσ(i0)) = deg(ai0) + deg(mi0,σ(i0)).

Proof of Item (ii). Let us compare deg(bj) + sj and deg(bσ(i0)) + sσ(i0) for
j in {1, . . . , c}.

� If j is in {σ(i0) + 1, . . . , c}, as bj =
∑r

i=1 aimi,j, then we can write:

deg(bj) + sj ≤ max
i∈{1,...,r}

(deg(mi,j) + deg(ai) + sj)

≤ max
i∈{1,...,r}

(di + deg(ai))

≤ di0 + deg(ai0),

so it holds that deg(bj) + sj ≤ di0 + deg(ai0). By Lemma 2.25, the
following equalities hold:

di0 +deg(ai0) = sσ(i0) +deg(mi0,σ(i0)) + deg(ai0) = deg(bσ(i0)) + sσ(i0).

We deduce that deg(bj) + sj ≤ deg(bσ(i0)) + sσ(i0).
� If j is in {1, . . . , σ(i0)− 1}, we need to show that:

deg(bj) + sj < deg(bσ(i0)) + sσ(i0).

As bj =
∑r

i=1 aimi,j, then we can write

deg(bj) + sj ≤ max
i∈{1,...,r}

(deg(mi,j) + deg(ai) + sj).

We need to show that for all i ∈ {1, . . . , r}:

deg(mi,j) + deg(ai) + sj < deg(bσ(i0)) + sσ(i0).

First, if i ∈ {1, . . . , i0 − 1}:

deg(mi,j) + deg(ai) + sj ≤ deg(ai) + di

< deg(ai0) + di0 , as i < i0.

As di0 + deg(ai0) = deg(bσ(i0)) + sσ(i0), then

deg(mi,j) + deg(ai) + sj < deg(bσ(i0)) + sσ(i0).
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If i ∈ {i0, . . . , r}:

deg(mi,j) + deg(ai) + sj < deg(ai) + di, as j < σ(i)

≤ deg(ai0) + di0 .

As di0 + deg(ai0) = deg(bσ(i0)) + sσ(i0), then

deg(mi,j) + deg(ai) + sj < deg(bσ(i0)) + sσ(i0).

As for all j ∈ {σ(i0) + 1, . . . , c}, deg(bj) + sj ≤ deg(bσ(i0)) + sσ(i0) and for
all j ∈ {1, . . . , σ(i0) − 1}, deg(bj) + sj < deg(bσ(i0)) + sσ(i0), then bσ(i0) is
the s-pivot of the vector AM .

Proposition 2.26. Let M = (mi,j)1≤i≤r,1≤j≤c be a matrix in K[t]r×c and
A = (ai)1≤i≤r be a vector in K[t]1×r with A ̸= 0. Suppose that M is in
s-weak-Popov form with s in Z1×c and M have no zero row. Write the
vector B = AM = (bi)1≤i≤c. If bj0 is the s-pivot of B, then there exists
i0 ∈ {1, . . . , r} such that mi0,j0 is a s-pivot of M and deg(bj0) ≥ deg(mi0,j0).

Proof. The �rst assertion is a restatement of Item (ii) of Lemma 2.25. We
have to prove that deg(bσ(i0)) ≥ deg(mi0,σ(i0)). By Item (i) of Lemma 2.25
we have the equality deg(bσ(i0)) = deg(mi0,σ(i0))+deg(ai0). We have already
seen that maxk∈{1,...,r}(dk+deg(ak)) is positive in the beginning of the proof
of Item (i) and by hypothesis we have i0 ∈ E. Then deg(ai0) is positive.

2.4 Admissible monomial orderings

For more details on admissible monomial orderings, we refer the reader
to [8, chapter 2]. Let K be a �eld and consider the polynomial ring
K[x1, . . . , xn]. Let α = (α1, . . . , αn) be a vector in Nn, the monomial∏n

i=1 x
αi
i is written xα and |α| =

∑n
i=1 αi is its degree.

De�nition 2.27. An admissible monomial ordering ≻ is a total ordering
on the monomials such that
(i) If xα ≻ xβ then for any γ ∈ Nn we have xα+γ ≻ xβ+γ.
(ii) Every nonempty subset of Nn has a smallest element for ≻.

For a total order on monomial of K[x1, . . . , xn] that respects Item (i),
Item (ii) is equivalent to the following assertion: for any α,β ∈ Nn, if
xα divides xβ then xβ ≽ xα.

Notation 2.28. For a polynomial p and an admissible monomial order-
ing ≻ we write lm≻(p), lt≻(p) and lc≻(p) the leading monomial, term and
coe�cient of p w.r.t ≻.
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De�nition 2.29. An admissible monomial ordering ≻ on K[x1, . . . , xn]
is called an elimination ordering in {xk, . . . , xn} with k ∈ {1, . . . , n} if
for all polynomials f in K[x1, . . . , xn], lm≻(f) ∈ K[xk, . . . , xn] implies that
f ∈ K[xk, . . . , xn].

De�nition 2.30. Consider two disjoint sets of variables {x1, . . . , xn} and
{y1, . . . , ym} with admissible monomial orderings ≻x and ≻y on each. We
de�ne the admissible monomial ordering (≻x,≻y) = ≻ on monomials of
K[x1, . . . , xn, y1, . . . , ym] as follows.

Let the following exponents αx, βx be in Nn and αy, βy be in Nm. Let
xαxyαy and xβxyβy be two monomials, xαxyαy ≺ xβxyβy if and only if
one of the two assertions that follow is true:

� xαx ≺x xβx,
� xαx = xβx and yαy ≺y y

βy .
Moreover, the ordering ≻ is an elimination ordering in the variables

{y1, . . . , ym}.
De�nition 2.31. An admissible monomial ordering ≻ on K[x1, . . . , xn] is
said to be a graded ordering if for all monomials xα,xβ:

deg(xα) > deg(xβ) implies that xα ≻ xβ.

De�nition 2.32. The grevlex ordering or drl ordering on K[x1, . . . , xn] is
an admissible monomial ordering de�ned as follows.
For α = (α1, . . . , αn) and β = (β1, . . . , βn), two monomials xα and xβ,
xα ≺grlex xβ if and only if one of the following assertions is satis�ed:

� deg(xβ) > deg(xα),
� deg(xβ) = deg(xα) and the rightmost nonzero entry of β − α ∈ Zn

is negative.

De�nition 2.33. The lexicographic ordering on K[x1, . . . , xn] is de�ned as
follows:
For α = (α1, . . . , αn) and β = (β1, . . . , βn), two monomials xα and xβ,
xα ≺lex xβ if and only if:

� the leftmost nonzero entry of β −α ∈ Zn is positive.

Remark 2.34. On K[t] there exists one admissible monomial ordering. It
is the ordering induced by the degree. We write it ≻t.

2.5 Gröbner basis

Let ≻ be an admissible monomial ordering on K[x1, . . . , xn]. Let S be
a subset of K[x1, . . . , xn]. We write ⟨lm≻(S)⟩ the ideal generated by all
the leading monomials of polynomials in S. For more details on Gröbner
basis we refer the reader to [8, Chapter2], in particular for the following
theorem,[8, section 5, theorem 4].
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Theorem 2.35. (Hilbert Basis Theorem). Every ideal I ⊆ K[x1, . . . , xn]
has a �nite generating set. In other words, there exists some polynomials
g1, . . . , gs in K[x1, . . . , xn] such that I = ⟨g1, . . . , gs⟩.

De�nition 2.36. Let I be an ideal of K[x1, . . . , xn] and {g1, . . . , gs} a sub-
set of I. The set {g1, . . . , gs} ⊂ I is a Gröbner basis of (I,≻) if and only
if

⟨lm≻(I)⟩ = ⟨lm≻(g1), . . . , lm≻(gs)⟩.

Example 2.37. The ideal I = ⟨y, xy2 + x + 1⟩ in K[x, y] is equal to the
ideal ⟨y, x+ 1⟩ because

xy2 + x+ 1 = (x+ 1) + (yx)y and x+ 1 = (xy2 + x+ 1)− (yx)y.

The set {x+ 1, y} is a Gröbner basis of (I,≻lex) because I is not equal to
K[x, y].

De�nition 2.38. A Gröbner basis G of (I,≻) in K[x1, . . . , xn] is minimal
if :

1) There are no polynomials f and g in G such that lm≻(f) divides
lm≻(g).

Moreover, the minimal Gröbner basis G is reduced if :
2) For all g ∈ G, lc≻(g) = 1.
3) For all g ∈ G, no monomial of g lies in ⟨lm≻(G\{g})⟩.

The following proposition can be found in [5, page 22].

Proposition 2.39. Let I be an ideal of K[x1, . . . , xn] . There exists a
unique minimal reduced Gröbner basis of (I,≻).

For a ring R and I an ideal of R we de�ne the quotient ring R/I as the
equivalent classes of the following equivalent relation on R: a ∼ b if and
only if a− b ∈ I. The following proposition can be found in [8, chapter 5,
section 3, proposition 4].

Proposition 2.40. Let I be an ideal of K[x1, . . . , xn]. The set of mono-
mials {xα, α ∈ Nn | xα /∈ ⟨lm≻(I)⟩} is a basis of the K-vector space
K[x1, . . . , xn]/I.

De�nition 2.41. An ideal I of K[x1, . . . , xn] is said to be zero-dimensional
if the K-vector space K[x1, . . . , xn]/I has �nite dimension.

2.6 Homogenization

De�nition 2.42. Let f be a polynomial in K[x1, . . . , xn]. We de�ne the
homogenization of f the polynomial fh = hdeg(f)f(x1/h, . . . , xn/h) in the
polynomial ring K[x1, . . . , xn, h]. Let g be a polynomial in K[x1, . . . , xn, h].
We de�ne the dehomogenization of g the polynomial gh = g(x1, . . . , xn, 1)
in K[x1, . . . , xn].
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Remark 2.43. We can see that for a polynomial f in K[x1, . . . , xn] we
have (fh)h = f but for a polynomial g in K[x1, . . . , xn, h], the equality
(gh)

h = g is not necessarily true. For example for xh+1 ∈ K[x, h] we have
((xh+ 1)h)

h = x+ h.

Lemma 2.44. Let ≻ be an admissible monomial ordering on K[x1, . . . , xn].
Let I and J be ideals of K[x1, . . . , xn] such that I ⊆ J and ⟨lm≻(I)⟩ =
⟨lm≻(J)⟩, then I = J .

Proof. Suppose that there exists f in J\I. Choose f in J\I with a leading
monomial as lower as possible. Then there exists a polynomial g in I which
has the same leading monomial. Write the polynomial

h =
f

lc≻(f)
− g

lc≻(g)
.

We see that h is in J but lm≻(f) ≻ lm≻(h) so h must lie in I by our
minimality hypothesis we deduce that the polynomials g and h are in I
which implies that f is in I which is a contradiction.

Proposition 2.45. Let ≻x be an admissible monomial ordering in the ring
K[x1, . . . , xn] and f1, . . . , fs be some polynomials of K[x1, . . . , xn]. Let us
consider the ideals I = ⟨f1, . . . , fs⟩ and J = ⟨fh

1 , . . . , f
h
s ⟩. If {g1, . . . , gℓ}

is a Gröbner basis of (J,≻) where ≻ = (≻x,≻h) on K[x1, . . . , xn, h], then
{(g1)h, . . . , (gℓ)h} is a Gröbner basis of (I,≻x).

Proof. Let f be in I. One can write it as f =
∑s

i=1 uifi with ui ∈
K[x1, . . . , xn] for i ∈ {1, . . . , s}. Deduce from the de�nition that

fh =
s∑

i=1

ui

(x1

h
, . . . ,

xn

h

)
fi

(x1

h
, . . . ,

xn

h

)
.

So there exists (β, α1, . . . , αs) ∈ Ns+1 such that

hβfh =
s∑

i=1

hαiuh
i f

h
i .

So it means that hβfh is in J , and there exists k ∈ {1, . . . , ℓ} such as
lm≻(gk) divides lm≻(h

βfh). Moreover, by the de�nition of ≻, lm≻x(f) =
lm≻(f

h)/(hα) for some α ∈ N. Deduce that lm≻(gk) divides h
α+β lm≻x(f)

which implies that lm≻x((gk)h) divides lm≻x(f). It means that

lm≻x(I) ⊆ ⟨lm≻x((g1)h), . . . , lm≻x((gℓ)h)⟩

Finally, if gk =
∑s

i=1 vi(fi)
h for some polynomials vi ∈ K[x1, . . . , xn, h] with

i ∈ {1, . . . , ℓ} then (gk)h =
∑ℓ

i=1(vi)hfi. Deduce that

⟨(g1)h, . . . , (gℓ)h⟩ ⊆ I.
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Observe that

lm≻x(I) = ⟨lm≻x((g1)h), . . . , lm≻x((gℓ)h)⟩

By Lemma 2.44,
⟨(g1)h, . . . , (gℓ)h⟩ = I.

Then the family of polynomials {(g1)h, . . . , (gℓ)h} is a Gröbner basis of
I.

The following property is a known is the literature.

Proposition 2.46. Let ≻grlex be the grevlex ordering in K[x1, . . . , xn] and
f1, . . . , fs be some polynomials of K[x1, . . . , xn]. Consider the ideals I =
⟨f1, . . . , fs⟩ and J = ⟨fh

1 , . . . , f
h
s ⟩ ⊆ K[x1, . . . , xn, h]. If {g1, . . . , gℓ} is

a Gröbner basis of (J,≻grlexh) where ≻grlexh is the grevlex ordering on
K[x1, . . . , xn, h], then {(g1)h, . . . , (gℓ)h} is a Gröbner basis of (I,≻grlex).

Proof. Let f be in I, we can write it as f =
∑s

i=1 uifi with ui ∈ K[x1, . . . , xn]
for i ∈ {1, . . . , s}. So there exists (β, α1, . . . , αs) ∈ Ns+1 such that

hβfh =
s∑

i=1

hαiuh
i f

h
i .

So it means that hβfh is in J , and there exists k ∈ {1, . . . , ℓ} such as
lm≻grlexh

(gk) divides lm≻grlexh
(hβfh). Moreover, by the de�nition the grevlex

ordering we can see that lm≻grlex
(f) = lm≻grlexh

(fh). We deduce by the
same argument as in the proof of Proposition 2.45 that lm≻grlex

((gk)h) di-
vides lm≻grlex

(f). The end of the proof is exactly the same as in Proposi-
tion 2.45.

2.7 Regular sequences

For more details on regular sequences we refer the reader to [6, page 24,
subsection 3.4].

De�nition 2.47. Let F = (f1, . . . , fs) ∈ K[x1, . . . , xn]
s be a sequence of

nonzero homogeneous polynomials. The sequence F is said to be a regular
sequence if:
(∗) For all i ∈ {2, · · · , s}, fi does not divide zero in the quotient ring

K[x1, . . . , xn]/⟨f1, . . . , fi−1⟩.
For a sequence F = (f1, . . . , fs) of polynomials which are not homogeneous
we de�ne for all i ∈ {1, . . . , s} the polynomial (fi)

H by (fi)
H(x1, . . . , xn) =

(fi)
h(x1, . . . , xn, 0). The sequence F is said to be regular if and only if the

sequence ((f1)
H , . . . , (fs)

H) is regular in K[x1, . . . , xn].

Remark 2.48.
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� If a sequence of homogeneous polynomials is regular then the polyno-
mials are pairwise coprime.

� By [11, Remark 8,page 20] and [11, de�nition 19,page 20], we can see
that for any regular sequence of homogeneous polynomials (f1, . . . , fs) ∈
K[x1, . . . , xn]

s such that I = ⟨f1, . . . , fs⟩ is zero-dimensional we have
s = n.

Example 2.49.

� This is an example of a sequence of homogeneous polynomials that
are pairwise coprime but the sequence is not regular:

f1 = x, f2 = y, f3 = x− y ∈ C[x, y, z].

The sequence (f1, f2, f3) is not regular because

f3 = 0 ∈ C[x, y, z]/⟨f1, f2⟩.

� This is an example of a sequence of polynomials that satis�es the
property (∗) but without being homogeneous and there homogenization
does not respect (∗) anymore:

f1 = x− 1, f2 = xy2 − 2, f3 = x2 − z ∈ C[x, y, z].

The sequence (f1, f2, f3) satis�es the property (∗) but it is not the case
for ((f1)

h, (f2)
h, (f3)

h) because :

(x2 − zh)(hy2 − 2h2y) ∈ ⟨(f1)h, (f2)h⟩

and (hy2 − 2h2y) /∈ ⟨(f1)h, (f2)h⟩.

2.8 Hilbert series

For more details on Hilbert series we refer the reader to [6] chapter 2 section
2. For n ∈ N the set K[x1, . . . , xn]d = {f ∈ K[x1, . . . , xn] | deg(f) =
d and f is homogeneous} is a K-vector space of dimension

(
n+d−1

d

)
. If I

is an ideal of K[x1, . . . , xn], then the set Id = I ∩ K[x1, . . . , xn]d is also a
K-vector space.

De�nition 2.50. Let f1, . . . , fs be homogeneous polynomials of K[x1, . . . , xn]
and I = ⟨f1, . . . , fs⟩. The Hilbert function in degree d ∈ N of the ideal I is
de�ned by:

HFI(d) = dim(K[x1, . . . , xn]d)− dim(Id).

De�nition 2.51. Let f1, . . . , fs be homogeneous polynomials of K[x1, . . . , xn]
and I = ⟨f1, . . . , fs⟩. The Hilbert series of an ideal I of K[x1, . . . , xn] is
de�ned as follows:

HSI(t) =
+∞∑
d=0

HFI(d)t
d.
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The following theorem can be found in [1, page 2, theorem 2].

Theorem 2.52. Let f1, . . . , fs be homogeneous polynomials in K[x1, . . . , xn]
with deg(fi) = di and I = ⟨f1, . . . , fs⟩. The sequence (f1, . . . , fs) is regular
if and only if its Hilbert series is given by

HSI(t) =

∏s
i=1(1− tdi)

(1− t)n
.

3 Lazard's algorithm

The original paper of this algorithm is [15]. For a set S of polynomials,
the set SpanK(S) is the K-vector space generated by S. In K[x1, . . . , xn],
the set Mond is the set of monomials of degree d and Mon≤d is the set of
monomials of degree at most d. The set Mon is the set of all monomials
of K[x1, . . . , xn]. The support of a polynomial f in K[x1, . . . , xn] is a �nite
subset J of Nn such that f =

∑
j∈J ajx

j were aj is in K\{0}. For a set S,
the set P (S) is the set of all subset of S.

3.1 The homogeneous case

Let us explain Lazard's algorithm in the homogeneous case and prove that
it computes a Gröbner basis.

Proposition 3.1. Let I be an ideal of K[x1, . . . , xn] generated by the ho-
mogeneous polynomials f1, . . . , fs in K[x1, . . . , xn] with deg(fi) = di. Let d
be in N, we consider the K-vector space Id = I

⋂
K[x1, . . . , xn]d of homoge-

neous polynomials of degree d in I. Then Id is equal to the K-vector space
SpanK({fim | m ∈ Mond−di and i ∈ {1, . . . , s}}).

Proof. Show that Id = SpanK({fim | m ∈ Mond−di and i ∈ {1, . . . , s}}) :

(⊇) It is obvious that this vector space is in Id because the polynomials
fim lies in K[x1, . . . , xn]d and in I. Moreover, a K-linear combination of
those polynomials stay in Id .

(⊆) Conversely, let f be in Id. Then f can be written as f =
∑s

i=1 uifi
with ui in K[x1, . . . , xn] for all i in {1, . . . , s}. Let i be in {1, . . . , s}, we
de�ne Ji ⊂ Nn as the support of the polynomial fi and Ki ⊂ Nn as the
support of the polynomial ui. We express those polynomials as

ui =
∑
k∈Ki

bi,kx
k and fi =

∑
j∈Ji

ai,jx
j
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with ai,j and bi,k in K for all j in Ji and k in Ki. Then we have

fiui =
∑

j∈Ji,k∈Ki

ai,jbi,kx
j+k

which leads to

f =
s∑

i=1

∑
j∈Ji,k∈Ki

ai,jbi,kx
j+k.

Let i be in {1, . . . , s}, observe that for all j ∈ Ji, |j| = di. We de�ne the
sets Ki,1 = {k ∈ Ki | |k| = d− di} and Ki,2 = {k ∈ Ki | |k| ≠ d− di}. We
can see that Ki = Ki,1 ⊔Ki,2. We can write:

f =
s∑

i=1

∑
j∈Ji,k∈Ki,2

ai,jbi,kx
j+k +

s∑
i=1

∑
j∈Ji,k∈Ki,1

ai,jbi,kx
j+k.

The �rst term of the sum has no monomial of degree d while the other term
is homogeneous of degree d. As f is homogeneous of degree d then the �rst
term is zero. We de�ne new polynomials ũi =

∑
k∈Ki,1

bi,kx
k which are

homogeneous of degree d − di and f =
∑s

i=1 ũifi. Then f is in the vector
space generated by the polynomials fim where m is in Mond−di .

The following de�nition can be found in [14, chapter 2, de�nition 2.61].

De�nition 3.2. Macaulay matrix

Let F = (f1, . . . , fs) be a sequence of polynomials in the ring K[x1, . . . , xn]
with deg(fi) = di and ≻ be an admissible monomial ordering. Let d be in
N. Let ϕ : N × K[x1, . . . , xn]

N → P (Mon) × P (Mon)N be a function such
that ϕ(d, F ) = (A,B) where B = (Bi)i∈N. We de�ne the Macaulay matrix
for d ∈ N as follows.

Each column is indexed by an element of A by decreasing order for ≻.
Each row is indexed by an element of the set {fim | i ∈ {1, . . . , s}, m ∈ Bi}.
For i in {1, . . . , s}, we write the set Bi = {mi,1, . . . ,mi,ki}. The rows are
arranged in decreasing order for the order ≻row de�ned as follows

fimi,k ≻row fi′mi′,k′ ⇔ i < i′ or (i = i′ and mi,k ≻ mi′,k′)

for all i and i′ in {1, . . . , s} and for all k in {1, . . . , ki} and k′ in {1, . . . , ki′}.
Let i be in {1, . . . , s}, j be in {1, . . . , ℓ} and k be in {1, . . . , ki}, the entry
c in the row fimi,k and in the column mj in the matrix is the coe�cient of
mj in the polynomial fimi,k.
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Macϕ(d,F ),≻ =



mℓ ≻ · · · ≻ mj ≻ · · · ≻ m1

f1 ·m1,k1

. . .
f1 ·m1,1

fi ·mi,ki

. . .
fi ·mi,k c

. . .
fi ·mi,1

fs ·ms,ks

. . .
fs ·ms,1



.

The idea in Lazard's algorithm is to �nd elements of Id that have for
leading monomials the leading monomials of Id. The following proposition
claims that those can be found in the row echelon form of the Macaulay
matrix of degree d.

Notation 3.3. Let f1, . . . , fs be polynomials of the ring K[x1, . . . , xn] with
deg(fi) = di. De�ne ϕ0(d, F ) = (Mond, Mond−d1 , . . . ,Mond−ds).

Remark 3.4. Let M be a matrix in Kr×c, in Section 2.1 we saw that there
exists a invertible matrix A in Kr×r such that M1 = AM is the reduced
echelon form of M . Let F = (f1, . . . , fs) be a sequence of homogeneous
polynomials and ≻ be an admissible monomial ordering. Suppose that M =
Macϕ0(d,F ),≻. Then the columns of M1 are also indexed by monomials of
Mond. The rows of such matrices can be seen as homogeneous polynomials
of degree d in K[x1, . . . , xn].

Proposition 3.5. Let F = (f1, . . . , fs) be a sequence of homogeneous poly-
nomials in K[x1, . . . , xn] and ≻ be an admissible monomial ordering. Let
M be the row echelon form of Macϕ0(d,F ),≻. The set lm≻(Id) is equal to the
set of monomials that index a column that contains a pivot in M .

Proof. By Proposition 3.1, the rows of Macϕ0(d,F ),≻ generate the K-vector
space Id. As there exists a square invertible matrix A such that

M = AMacϕ0(d,F ),≻ .

The rows of the matrix M generate the same K-vector space Id. By Def-
inition 3.2, it is obvious that a monomial which indexes a column that
contains a pivot in M is an element of lm≻(Id). Moreover, let f be in Id,
then

Macϕ0(d,(f)),≻ = ÃM
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for a certain row vector Ã with entries inK. By Proposition 2.4,Macϕ0(d,(f)),≻
has the same pivot as a row of M . That means lm≻(f) is a monomial that
index a column that contains a pivot in M .

Proposition 3.6. Let f1, . . . , fs be homogeneous polynomials in the ring
K[x1, . . . , xn] with d = mini∈{1,...,s}(deg(fi)) which generate an ideal I =
⟨f1, . . . , fs⟩. Then the equality minf∈I deg(f) = d holds.

Proof. Write

f =
∑

uifi,

observe that the degree of all monomials of f is greater than d.

De�nition 3.7. Let F = {f1, . . . , fs} be a set of homogeneous polynomials
of an ideal I of K[x1, . . . , xn] and let ≻ be an admissible monomial order
on K[x1, . . . , xn]. The set F is said to be a d-Gröbner basis of (I,≻) if for
any f in I with deg(f) ≤ d we have

lm≻(f) ∈ ⟨lm≻(f1), . . . , lm≻(fs)⟩.

The following Proposition can be found in [14, Chapter 2, Proposition 2.60]

Proposition 3.8. Let I be an ideal of K[x1, . . . , xn] and ≻ be an admissible
monomial ordering on K[x1, . . . , xn]. There exists some d0 such that for all
d ≥ d0 in N, if {p1, . . . , pℓ} is a d-Gröbner basis of (I,≻) then it is a
Gröbner basis of (I,≻).

Proof. Write {g1, . . . , gs} the minimal reduced Gröbner basis of (I,≻).
Write d0 = max(deg(g1), . . . , deg(gs)), let d ≥ d0 and {p1, . . . , pℓ} be a
d-Gröbner basis of (I,≻) and Ĩ = ⟨p1, . . . , pℓ⟩. As deg(gi) ≤ d then as
{p1, . . . , pℓ} is a d-Gröbner basis of (I,≻), lm≻(gi) ∈ ⟨lm≻(p1), . . . , lm≻(pℓ)⟩,
so ⟨lm≻(I)⟩ = ⟨lm≻({p1, . . . , pℓ})⟩ as {g1, . . . , gs} is a Gröbner basis of I.
Moreover Ĩ ⊆ I which leads to ⟨lm≻(I)⟩ = ⟨lm≻(Ĩ)⟩, by Lemma 2.44 we
deduce that I = Ĩ which means {p1, . . . , pℓ} is a Gröbner basis of (I,≻).

Remark 3.9. Macaulay bound [15, page 154, Theorem 3]
Let F = (f1, . . . , fs) be a regular sequence of polynomials of degree d1, . . . , ds
that generate the ideal I. There exists a formula for such a d0 that works
for the grevlex ordering:

D =

(
s∑

i=1

(di − 1)

)
+ 1.

It implies that all polynomial from the reduced minimal Gröbner basis of
(I,≻grlex) have degree D or less. The K[t]-vector space

V = ⟨mfi | i ∈ {1, . . . , s},m ∈ Mon≤D−di⟩K
contains a Gröbner basis of (I,≻grlex).
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Theorem 3.10. Macaulay bound [15, page 154, Theorem 3]
Let F = (f1, . . . , fs) be a regular sequence of homogeneous polynomials of
degree d1, . . . , ds that generate the ideal I. Let ≻ be a graded ordering on
K[x1, . . . , xn]. Suppose I is zero-dimensional, then for all element g of the
minimal Gröbner basis of (I,≻) the inequality:(

s∑
i=1

(di − 1)

)
+ 1 ≥ deg(g)

holds.

Proof. As (f1, . . . , fs) is a regular sequence and I is zero-dimensional, then
s = n by Remark 2.48. As f1, . . . , fs are homogeneous and (f1, . . . , fs) is a
regular sequence, then

HSI(t) =

∏n
i=1(1− tdi)

(1− t)n

by Theorem 2.52. Observe that HSI(t) is a polynomial in t:

HSI(t) =

∏n
i=1(1− tdi)

(1− t)n

=

∏n
i=1(1− t)

∑di−1
j=0 tj

(1− t)n

=
n∏

i=1

di−1∑
j=0

tj

Observe that the degree of HSI(t) is (
∑s

i=1(di − 1)). Let us de�ne the
integer D = (

∑s
i=1(di − 1)) + 1. By De�nition 2.51, for all d ≥ D the

equality HFI(d) = 0 holds, which means

I ∩K[x1, . . . , xn]d = K[x1, . . . , xn]d.

Let g be an element of the minimal Gröbner basis of (I,≻) and let suppose
that deg(g) > D. As ≻ is a graded ordering, then deg(lm≻(g)) = deg(g).
Write xα = lm≻(g), then there exists a monomial xβ such that:

� xβ ̸= xα

� xβ divides xα

� deg(xβ) ≥ D.
As deg(xβ) ≥ D, the monomial xβ is in I because

I ∩K[x1, . . . , xn]deg(xβ) = K[x1, . . . , xn]deg(xβ).
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As the monomial xβ is in I, there exists f an element of the minimal
Gröbner basis of (I,≻) such that

lm≻(f) divides x
β

which implies that
lm≻(f) divides lm≻(g).

This is a contradiction with the fact that g is an element of the minimal
Gröbner basis of (I,≻). By this contradiction, deduce that deg(g) ≤ D.

Example 3.11. If we take I = ⟨x, xh2 − y3, yh2 − z3⟩ for the lexicographic
ordering in K[x, y, z, h], the Macaulay bound is 5 but the minimal reduced
Gröbner basis of (I,≻lex) is {x, y3, y2z3, yz6, yh2 − z3, z9}. This shows that
the Macaulay bound does not apply for the lexicographic ordering.

Algorithm 1 Homogeneous Lazard's Algorithm

Input: homogeneous polynomials F = (f1, . . . , fs) of K[x1, . . . , xn] with
deg(fi) = di an admissible monomial ordering ≻ and an integer dmax.

Output: a dmax-Gröbner basis of (⟨f1 . . . fs⟩,≻).
1: G = {}
2: dmin = mini∈{1,...,s}(deg(fi))
3: for d = dmin to dmax do

4: M = Macϕ0(d,F ),≻
5: md = column vector that contains all the monomials of degree d in

decreasing order for ≻.
6: M̃ = reduced row echelon form of M
7: I = M̃ ·md

8: G = G
⋃
{h ∈ I | ∀g ∈ G

⋃
I, g ̸= h, lm≻(g) does not divide

lm≻(h)}
9: return G

Proposition 3.12. The output of Algorithm 1 is a dmax-Gröbner basis of
(⟨f1, . . . fs, ⟩,≻).

Proof. Write G the set of polynomials that the algorithm returns and we
write G̃ the set of polynomials which are the nonzero rows of the reduced
row echelon forms of all Macaulay matrices from dmin to dmax. We notice
by Step 8 in the algorithm that G is a dmax-Gröbner basis of I if and only
if G̃ is also one, in fact ⟨{lm<(g), g ∈ G̃}⟩ = ⟨{lm<(g), g ∈ G}⟩. Let us
show that G̃ is a dmax-Gröbner basis.
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Let f be a polynomial I such that deg(f) ≤ dmax then by Proposi-
tion 3.6

f =
dmax∑

d=dmin

pd

such that the polynomial pd ∈ K[x1, . . . , xn]d (the homogeneous part in de-
gree d of f). There exists j such that lm≻(pj) = lm≻(f). As f =

∑s
i=1 uifi,

we notice that pj =
∑s

i=1 ũifi with the ũi that are homogeneous with de-
gree j − di. As pj is in SpanK({fim | m ∈ Mond−di and i ∈ {1, . . . , s}}),
by Proposition 3.1 the polynomial pj is in Id = I

⋂
K[x1, . . . , xn]d. As

pj is in Id, by Proposition 3.5 lm≻(f) = lm≻(pj) is in the ideal gener-
ated by the leading terms of G̃ which means G̃ is a dmax-Gröbner-basis of
(⟨f1 . . . fs⟩,≻).

3.2 The a�ne case

In Section 3.1 we saw that if f1, . . . , fs are homogeneous we can �nd a
Gröbner basis with Lazard's algorithm but this is still possible when those
polynomials are not homogeneous. By Section 2.6 we can proceed by ho-
mogenizing input polynomials f1, . . . , fs hence obtaining fh

1 , . . . , f
h
s . After

that we apply the algorithm on fh
1 , . . . , f

h
s and we obtain a set of polyno-

mials as output. By evaluating this set in 1 on the variable h of homoge-
nization ( g −→ gh ) it gives us a Gröbner basis by Proposition 2.46. The
following algorithm does not use homogenization.

Notation 3.13. Let f1, . . . , fs be polynomials of the ring K[x1, . . . , xn]
with deg(fi) = di. De�ne ϕ1(d, F ) = (Mon≤d, Mond−d1 , . . . ,Mond−ds) and
ϕ2(d, F ) = (Mon≤d, Mon≤d−d1 , . . . ,Mon≤d−ds).

23



Algorithm 2 A�ne Lazard's Algorithm

Input: F = (f1, . . . , fs) polynomials of K[x1, . . . , xn] with deg(fi) = di.
Output: Gröbner basis of (⟨f1 . . . fs⟩,≻grlex).
1: dmin = mini∈{1,...,s}(di)
2: D =

∑n
i=1(di − 1) + 1

3: G = {}
4: M = Macϕ2(dmin,F ),≻grlex

5: mdmin
= vector column that contain all the monomials of degree dmin

or less in decreasing order.
6: M̃ = row echelon form of M
7: I = M̃ ×mdmin

8: G = I
9: for d = dmin + 1 to D do

10: M = Macϕ1(d,F ),≻grlex

11: M =

(
M

0 M̃

)
12: md = vector column that contain all the monomials of degree d or

less in decreasing order.
13: M̃ = row echelon form of M
14: I = M̃ ×md

15: G = G
⋃
{h ∈ I | ∀g ∈ G

⋃
I, g ̸= h, lm≻grlex

(g) does not divide
lm≻grlex

(h)}
16: return G

Proposition 3.14. Suppose that F = ((f1)
h, . . . , (fs)

h) is a regular se-
quence and that the ideal ⟩f1, . . . , fs⟨ is zero-dimensional . The output of
Algorithm 2 is a Gröbner basis of the pair (⟨f1 . . . fs⟩,≻grlex).

Proof. Let a regular sequence F = (f1, . . . , fs) be in K[x1, . . . , xn] with
deg(fi) = di and the ideal I = ⟨f1, . . . , fs⟩. Let ≻grlexh the grevlex ordering
onK[x1, . . . , xn, h]. Write F̃ = (fh

1 , . . . , f
h
s ) and dmin = mini∈{1,...,s}(deg(fi)).

As f is regular, by Proposition 2.46 and Remark 3.9, we know that if g is an
element of the minimal reduced Gröbner basis of I for ≻grlex there exists p
in the ring K[x1, . . . , xn, h] such that ph = g̃ with lm≻grlex

(g) = lm≻grlex
(g̃)

and there exists d ∈ {dmin, . . . , D}, with D is the Macaulay bound, such
that p is in the vector space generated by the rows of Mac

ϕ0(d,F̃ ),≻grlexh
. So

we can then write p =
∑s

i=1 f
h
i ui with deg(ui) = d − di. Then by taking

h = 1 we have g̃ =
∑s

i=1 fi(ui)h with deg((ui)h) ≤ d − di, that means g̃
is generated by the rows of Macϕ2(d,F ),≻grlex

. Then Algorithm 2 gives us

a Gröbner basis of (I,≻grlex) as for all g in the minimal Gröbner basis of
(I,≻grlex) the output contains g̃ such lm≻grlex

(g) = lm≻grlex
(g̃).
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3.3 Complexity

We assume that we are computing a Gröbner basis for the grevlex ordering.
Let F = (f1, . . . , fs) be a regular sequence of polynomials in K[x1, . . . , xn]
so that means we can use the Macaulay bound. Suppose that F is regular
and that ⟨f1, . . . , fs⟩ is zero-dimensional. That implies that s = n by [11,
page20,de�nition 19].

Suppose that for all i in {1, . . . , n}, deg(fi) = d in N. Now write the
Macaulay bound:

D = 1− n+
n∑

i=1

d = 1 + n(d− 1).

Let us �nd some information about the size of the last matrix M =
MacD≤,≻drl

F :
- The number of columns is:

Col(n, d) =

(
D + n

D

)
.

- The number of rows is:

Row(n, d) = n

(
D − d+ n

D − d

)
.

- The rank is lower than the minimum of the two numbers above.
In order to know min(Col(n, d),Row(n, d)) and to e�ciently bounded the
rank, write:

R(n, d) =
Row(n, d)

Col(n, d)
= n

d−1∏
i=0

D − i

D + n− i
.

Proposition 3.15. For n ≥ 4 and d ≥ 2, R(n, d) > 1.

Proof. Let d ≥ 2, we will show that (n 7−→ R(n, d)) is increasing on
[4,+∞[. We can show it for:

ln(R(n, d)) = ln(n) +
d−1∑
i=0

(ln(n(d− 1) + 1− i)− ln(nd+ 1− i)).

The derivative in n is:

1

n
+

d−1∑
i=0

d− 1

n(d− 1) + 1− i
− d

nd+ 1− i

=
1

n
+

d−1∑
i=0

(d− 1)(nd+ 1− i)− d(n(d− 1) + 1− i)

(n(d− 1) + 1− i)(nd+ 1− i)

=
1

n
+

d−1∑
i=0

i− 1

(n(d− 1) + 1− i)(nd+ 1− i)
.
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It is easy to see that the only term that is negative is when i = 0 but it
is less in ultimate value than 1

n
. Then (n 7−→ R(n, d)) is increasing on

[4,+∞[.

We know that R(4, 2) = 10
9
> 1, R(4, 3) = 168

143
> 1, R(4, 4) = 143

119
> 1, if

we prove that (d 7−→ R(4, d)) is increasing on [4,+∞[ we can deduce that
R(4, d) > 1 for all d ≥ 2. First we ensure that this function is well de�ned:

R(4, d) = 4
d−1∏
i=0

4(d− 1) + 1− i

4d+ 1− i
= 4

d−1∏
i=0

4d+ 1− (i+ 4)

4d+ 1− i

= 4

(
d−1∏
i=0

1

4d+ 1− i

)(
d+3∏
i=4

4d+ 1− i

)
= 4

3∏
i=0

3d+ 1− i

4d+ 1− i
.

As above we look at the derivative in d of ln(R(4, d)):

3∑
i=0

3

3d+ 1− i
− 4

4d+ 1− i
=

3∑
i=0

i− 1

(3d+ 1− i)(4d+ 1− i)
.

We can see that in ultimate value the term i = 2 is greater than the term
i = 0 so this quantity is positive. This concludes the proof.

Proposition 3.16. For n = 2 or n = 3 and d ≥ 2, R(n, d) < 1.

Proof. If n = 2 it is easy to see that (d 7−→ R(2, d)) is a decreasing function
on [2,+∞[ with the same method as above. Moreover, R(2, 2) = 3

5
< 1.

Let us take n = 3, (d 7−→ R(3, d)) is increasing on [3,+∞[ but it seems
that R(3, d) < 1 for all d ≥ 2.

R(3, d) = 3
d−1∏
i=0

3(d− 1) + 1− i

3d+ 1− i
= 3

2∏
i=0

2d+ 1− i

3d+ 1− i
.

See that R(3, 2) = 6
7
, R(3, 3) = 7

8
and lim

d→+∞
(R(3, d)) = 8

9
, which con-

cludes the proof.

Proposition 3.17. Let us take F = (f1, . . . , fn) with deg(fi) = di and

F̃ = (f̃1, . . . , f̃n) with deg(f̃i) = d and nd =
∑n

i=1 di. The new function is

R(n, d) =

∑n
i=1

(
n+D−di
D−di

)(
D+n
D

) .

Then for n ≥ 4 and d ≥ 2, R(n, d) > 1 in that case.
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Proof. The Macaulay bounds of F and F̃ are equal:

D =

(
n∑

i=1

di

)
− n+ 1 = nd− n+ 1 =

(
n∑

i=1

d

)
− n+ 1 = D̃.

We want to compare the numbers of lines in those two cases:

Row =
n∑

i=1

(
n+D − di
D − di

)
and

R̃ow = n

(
n+D − d

D − d

)
.

First, D − d is the mean of the D − di:

1

n

n∑
i=1

(D − di) = D − d.

Let x be in N, then: (
x+ n

x

)
=

1

n!

n−1∏
i=0

(x+ n− i).

Observe that the function f : R+ −→ R de�ned as:

f(x) =
1

n!

n−1∏
i=0

(x+ n− i)

is convex as it is a polynomial with positive coe�cients.
Deduce that the inequality:

1

n

n∑
i=0

f(D − di) ≥ f(
1

n

n∑
i=0

(D − di))

which is equivalent to Row ≥ R̃ow holds. As the number of column is the
same, that concludes the proof.

The following result can be found in [18, chapter 2]. The exponent ω is the
constant of matrices multiplication.

Theorem 3.18. Let M be a matrix of Kr×c, then it takes

O(rank(M)ω−2rc)

operations in K to obtain its reduced row echelon form.
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Let us �nd the rank of M more precisely. By Proposition 3.5 and the
de�nition of the Hilbert function, the following result holds.

Proposition 3.19. Let F = (f1, . . . , fs) be a set of homogeneous polyno-
mials of K[x1, . . . , xn] of degree d0 and I = ⟨f1, . . . , fs⟩. Let d be in N. The
following equality holds:

rank(Macd,≻grlex
F ) =

(
n− 1 + d

d

)
−HFI(d).

Let F = (f1, . . . , fs) be a set of polynomials of K[x1, . . . , xn] of de-
gree d0 and I = ⟨f1, . . . , fs⟩. By applying the homogenization it gives
F h = (fh

1 , . . . , f
h
s ). In order to search the number of operations to com-

pute a Gröbner basis of (I,≻grlex), we compute for the homogenized set of
polynomials. It gives us

D∑
d=d0

O

(((
d+ n

d

)
−HFI(d)

)ω−2(
d+ n

d

)
n

(
d− d0 + n

d− d0

))
where D = 1 + n(d0 − 1).

4 Polynomial matrix version of Lazard's algo-

rithm

4.1 The Hermite normal form

This section generalizes Lzard's algorithm by working on K[t][x1, . . . , xn] ≈
K[x1, . . . , xn, t]. As those two rings are isomorphic, the notion of ideal is
exactly the same. Let tβxα be a monomial, the x part of this monomial
is xα. Let f be a polynomial of K[t][x1, . . . , xn], it can be written f =∑

γ∈M aγx
γ with M a �nite subset of Nn and aγ in K[t] for all γ in M .

The set Mond,x is the set of monomials in the x1, . . . , xn variables of degree
d, Mond is the set of monomials in the x1, . . . , xn, t variables of degree d
as above. Let ≻x be an admissible monomial ordering on K[x1, . . . , xn].
Let f be a polynomial of K[t][x1, . . . , xn], write degx(f) its degree in the
x1, . . . , xn variables. The polynomial f is x-homogeneous if all monomials
of f have the same degree in the x1, . . . , xn variables. The degree of a
coe�cient aγ it will be written degt(a). For ≻x an admissible monomial
ordering on K[x1, . . . , xn], write lm≻x,x(f) for leading monomial, lt≻x,x(f)
for the leading term and lc≻x,x(f) for leading coe�cient. For a subset S of
K[t][x1, . . . , xn], the set ⟨S⟩K[t] is the K[t]-module generated by S.

Example 4.1. Let f = 2x1x2t
2 − x2

1t+4x2
1 be a polynomial in Q[t][x1, x2].

Let ≻grlex be the grevlex ordering on Q[x1, x2] and ≻grlext the grevlex order-
ing on Q[x1, x2, t]. Then:
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� deg(f) = 4
� degx(f) = 2
� lm≻grlext

(f) = x1x2t
2

� lt≻grlext
(f) = 2x1x2t

2

� lc≻grlext
(f) = 2

� lm≻grlex,x(f) = x2
1

� lt≻grlex,x(f) = (−t+ 4)x2
1

� lc≻grlex,x(f) = −t+ 4
� degt(lc≻grlex,x(f)) = 1.

For the following proposition, the sets K[t][x1, . . . , xn]d and K[x1, . . . , xn, t]d
are not equal. In fact, K[t][x1, . . . , xn]d is the set of x-homogeneous poly-
nomials f in K[t][x1, . . . , xn] such that degx(f) = d.

Proposition 4.2. Let f1, . . . , fs be x-homogeneous polynomials of the ring
K[t][x1, · · · , xn] with degx(fi) = di and the ideal I = ⟨f1, . . . , fs⟩. Con-
sider the K][t]-module Id = I

⋂
K[t][x1, . . . , xn]d. This is the set of x-

homogeneous polynomials of degree d in I. Then Id is equal to the K[t]-
module ⟨{fimi|mi ∈ Mond−di,x and i ∈ {1, . . . , s}}⟩K[t].

Proof. It is exactly the same proof that for Proposition 3.1 in Section 3.1
but with coe�cients which are polynomials in K[t].

Notation 4.3. Let f1, . . . , fs be polynomials of the ring K[t][x1, . . . , xn]
with degx(fi) = di. De�ne ϕ3(d, F ) = (Mond,x,Mond−d1,x, . . . ,Mond−ds,x).

Example 4.4. Let F = (x1t+ 2x2, 3x
2
2t

2 − 4x1x2) = (f1, f2) in Q[t][x1, x2]
and ≻grlex be the grevlex ordering on Q[x1, x2], then

Macϕ3(3,F ),≻grlex
=


x3
1 x2

1x2 x1x
2
2 x3

2

x2
1 · f1 t 2 0 0

x1x2 · f1 0 t 2 0
x2
2 · f1 0 0 t 2

x1 · f2 0 −4 3t2 0
x2 · f2 0 0 −4 3t2

.

Proposition 4.5. Let f be a x-homogeneous polynomial in the ring K[t][x1, . . . , xn]
with degx(f) = d and ≻x an admissible monomial ordering on the ring
K[x1, . . . , xn]. Consider Macϕ3(d,(f)),≻x

. This is a row vector with entries in
K[t]. It is then in weak-Hermite from, write c its pivot and m the mono-
mial in x that indexes the column of the entry c. Then lm≻x,x(f) = m and
lc≻x,x(f) = c.

Proof. By De�nition 3.2, the monomials that index the columns are ordered
with ≻x, then we are done.
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Proposition 4.6. Let F = (f1, . . . , fs) a family of x-homogeneous polyno-
mials of K[t][x1, . . . , xn] with degx(fi) = di and I = ⟨f1, . . . , fn⟩. Let us
consider Id for a degree d in N and ≻x an admissible monomial ordering on
K[x1, . . . , xn]. Let f be a polynomial in Id and M = Macϕ3(d,F ),≻x

. Then
there exists a row of the Hermite form of M which represents a polyno-
mial g in Id such that lm≻x,x(g) is equal to lm≻x,x(f) and degt(lc≻x,x(g)) ≤
degt(lc≻x,x(f)).

Proof. By Proposition-De�nition 2.7, there exists a square unimodular ma-
trix A such that M̃ = AM is the Hermite form of M . As A is unimodular,
by Proposition 2.11, the rows of M̃ generate the same K[t]-module as the

rows ofM . By ??, the rows ofM generate Id. Then the rows of M̃ generate
Id. Observe that there exists a row vector B which has its entries in K[t]
such that:

Macϕ3(d,(f)),≻x
= BM̃.

As M̃ is in Hermite form, by Proposition 2.12 there exists a row of M̃
such that the column index of its pivot is the same as the one of the
pivot of MacK[t],d,≻x

{f}. As this row can be seen as a polynomial g in
Id, Proposition 4.5 implies that lm≻x,x(g) is equal to lm≻x,x(f). Moreover,
the inequality on the degree in Proposition 2.12 implies that the inequality
degt(lc≻x,x(g)) ≤ degt(lc≻x,x(f)) holds.

De�nition 4.7. Let f1, . . . , fs be x-homogeneous polynomials of the ring
K[t][x1, · · · , xn] with degx(fi) = di and the ideal I = ⟨f1, . . . , fs⟩. The
set F = (f1, . . . , fs) is a K[t]-Gröbner basis of (I,≻x) if I = ⟨f1, . . . , fs⟩
and for all f ∈ I there exists i in {1, . . . , s} such that lm≻x,x(fi) divides
lm≻x,x(f) and degt(lc≻x,x(fi)) ≤ degt(lc≻x,x(f)).

Lemma 4.8. Let f be a polynomial of K[t][x1, · · · , xn] and ≻x be an ad-
missible monomial ordering on K[x1, · · · , xn]. Then

lm≻x,x(f)t
degt(lc≻x,x(f)) = lm≻(f)

where (≻x,≻degt) = ≻.

Proof. Write

f =
∑
γ∈M

aγx
γ

with S a �nite subset of Nn and aγ inK[t] for all γ in S. Let γ0 be inM such
that lm≻x,x(f) = xγ0 . It is clear that xγ0 is the x part of lm≻(f) because
else, it would not be equal to lm≻x,x(f). It means lc≻x,x(f)) = aγ0 . Consider
aγx

γ0 , compare tixγ0 for i in {0, . . . , degt(aγ0)}. Obviously tdegt(aγ0 )xγ0 is
the greater monomial in f for ≻.
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Proposition 4.9. Let f1, . . . , fs be x-homogeneous polynomials of the ring
K[t][x1, · · · , xn] with degx(fi) = di and the ideal I = ⟨f1, . . . , fs⟩. Let
≻x be an admissible monomial ordering on K[x1, · · · , xn]. The set F =
(f1, . . . , fs) is a K[t]-Gröbner basis of (I,≻x) if and only if F is a Gröbner
basis of (I,≻) with (≻x,≻degt) = ≻.

Proof.
(⇒) Let F be aK[t]-Gröbner basis of (I,≻x). Let p be in I. Then there ex-

ists f in F such that lm≻x,x(f) divides lm≻x,x(p) and degt(lc≻x,x(p)) ≥
degt(lc≻x,x(f)). By Lemma 4.8,

lm≻(f) = lm≻x,x(f)t
degt(lc≻x,x(f)) and lm≻(p) = lm≻x,x(f)t

degt(lc≻x,x(p)).

Observe that lm≻(f) divides lm≻(p).

(⇐) Let F be a Gröbner basis of (I,≻). Let p be in I. Then there exists
f in F such that lm≻(f) divides lm≻(p). By Lemma 4.8 as above,
lm≻x,x(f) divides lm≻x,x(p) and degt(lc≻x,x(p)) ≥ degt(lc≻x,x(f)).

De�nition 4.10. Let I be an ideal of K[t][x1, · · · , xn]. Let f1, . . . , fs be x-
homogeneous polynomials in I. Let ≻x be an admissible monomial ordering
on K[x1, · · · , xn]. The set F = (f1, . . . , fs) is a (d,K[t])-Gröbner basis of
(I,≻x) if for all f ∈ I with degx(f) ≤ d, there exists i in {1, . . . , s} such
that lm≻x,x(fi) divides lm≻x,x(f) and degt(lc≻x,x(fi)) ≤ degt(lc≻x,x(f)).

Proposition 4.11. Let I be an ideal of K[t][x1, . . . , xn] and ≻x an admis-
sible monomial ordering on K[x1, . . . , xn]. There exists an integer d0 such
that for all d ≥ d0, if a set F is a (d,K[t])-Gröbner basis of (I,≻x) then F
is a K[t]-Gröbner basis of (I,≻x).

Proof. Let (g1, . . . , gℓ) be a minimal Gröbner basis of (I,≻) with ≻ =
(≻x,≻deg(t)), write d0 = max(degx(g1), . . . , degx(gℓ)). Consider d ≥ d0
and F = (f1, . . . , fs) a (d,K[t])-Gröbner basis of (I,≻x). Let us show
that F is a K[t]-Gröbner basis of (I,≻x). By Proposition 4.9, we need
to show that F is a Gröbner basis of (I,≻). Let i be in {1, . . . , ℓ}, by
hypothesis, there exists fj in F such that lm≻x,x(fj) divides lm≻x,x(gi) and
degt(lc≻x,x(fj)) ≤ degt(lc≻x,x(gi)). By Lemma 4.8, this implies that lm≻(fj)
divides lm≻(gi). As

⟨lm≻(g1), . . . , lm≻(gℓ)⟩ = lm≻(I)

then
⟨lm≻(f1), . . . , lm≻(fs)⟩ = lm≻(I).

By Lemma 2.44,
⟨f1, . . . , fs⟩ = ⟨g1, . . . , gℓ⟩ = I

which concludes the proof.
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The following algorithm is a version of Lazard's algorithm that uses the
Hermite form.

Algorithm 3 Hermite PM Lazard's Algorithm

Input: homogeneous in x polynomials F = (f1, . . . , fs) of K[x1, . . . , xn, t]
with degx(fi) = di, an integer dmax, an admissible monomial ordering
≻x.

Output: A (dmax,K[t])-Gröbner basis of (⟨f1, . . . , fs⟩,≻x)
1: G = {}
2: dmin = mini∈{1,··· ,s}(degx(fi))
3: for d = dmin to dmax do

4: M = Macϕ3(d,F ),≻x

5: md = vector column that contain all the monomials in x of degree
d in decreasing order for ≻x.

6: M̃ = the Hermite form of M
7: I = M̃ ·md

8: G = G
⋃
{h ∈ I|∀g ∈ G

⋃
I, g ̸= h, lm≻x,x(g) does not di-

vide lm≻x,x(h) or lm≻x,x(g) divides lm≻x,x(h) and degt(lc≻x,x(h)) <
degt(lc≻x,x(g))}

9: return G
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Lemma 4.12. Let f1, . . . , fs be x-homogeneous polynomials of the ring
K[t][x1, . . . , xn] and ≻x be an admissible monomial ordering on the ring
K[x1, . . . , xn]. Let dmax be an integer. Let G be the output of Algorithm 3.

Let G̃ the output of Algorithm 3 but step 8 of the algorithm is replaced by:

G = G ∪ I.

The set G is a (dmax,K[t])-Gröbner basis of (I,≻x) if and only if G̃ is a
(dmax,K[t])-Gröbner basis of (I,≻x).

Proof.
(⇒) Suppose G is a (dmax,K[t])-Gröbner basis of (I,≻x). As G ⊆ G̃, then

G̃ is a (dmax,K[t])-Gröbner basis of (I,≻x).

(⇐) Suppose that G̃ is a (dmax,K[t])-Gröbner basis of (I,≻x). Let f be
in I with degx(f) ≤ dmax, there exists g in G̃ such that lm≻x,x(g)
divides lm≻x,x(f) and degt(lc≻x,x(g)) ≤ degt(lc≻x,x(f)). If g ∈ G then
it concludes for this chosen f but if g is not in G then that there exists
a g′ ∈ G such that lm≻x,x(g

′) divides lm≻x,x(g) and degt(lc≻x,x(g
′)) ≤

degt(lc≻x,x(g)). Finally, that implies that lm≻x,x(g
′) divides lm≻x,x(f)

and degt(lc≻x,x(g
′)) ≤ degt(lc≻x,x(f)) which concludes the proof.

Proposition 4.13. Let f1, . . . , fs be x-homogeneous polynomials of the ring
K[t][x1, . . . , xn] and ≻x be an admissible monomial ordering on K[x1, . . . , xn].
Let dmax be an integer. Algorithm 3 returns a (dmax,K[t])-Gröbner basis of
(⟨f1, . . . , fs⟩,≻x).

Proof. With the same notation as in Lemma 4.12, we need to prove that
G̃ is a (dmax,K[t])-Gröbner basis of (I,≻x).

Let f be in I with degx(f) ≤ dmax and dmin = min(degx(fi)). Write

f =
s∑

i=1

uifi and f =
dmax∑

d=dmin

pd

with degx(pd) = d and ui in K[t][x1, . . . , xn, t]. As the fi are homoge-
neous we can see that for all d, pd is in Id. There exists a d0 such that
lm≻x,x(f) = lm≻x,x(pd0) and degt(lc≻x,x(pd0)) = degt(lc≻x,x(f)). By Propo-
sition 4.6, there exists g in G̃ such that lm≻x,x(g) divides lm≻x,x(pd0) and
degt(lc≻x,x(g)) ≤ degt(lc≻x,x(pd0)). By the equalities above, that implies
that lm≻x,x(g) divides lm≻x,x(f) and degt(lc≻x,x(g)) ≤ degt(lc≻x,x(f)) which
means that G̃ is a (d,K[t])-Gröbner basis of (⟨f1, . . . , fs⟩,≻x).

This algorithm computes a Gröbner basis for this order (≻x,≻degt). The
problem is that this new algorithm can not return us a grevlex Gröbner
basis (for example t2 ≻drl x1).
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4.2 The Popov form for grevlex ordering

This subsection proposes an algorithm which computes a Gröbner basis
for the ordering ≻grlext on K[x1, . . . , xn, t] with x1 ≻grlext x2 · · · ≻grlext

xn ≻grlext t. The following de�nition is about a�neK[t]Macaulay matrices.
The changes are that the monomials that index the columns are in degree
at most d and the rows represent polynomials of degree at most d (not
degx).

Notation 4.14. Let f1, . . . , fs be polynomials of the ring K[t][x1, . . . , xn]
with deg(fi) = di. De�ne ϕ4(d, F ) = (Mon≤d,x,Mon≤d−d1,x, . . . ,Mon≤d−ds,x)
and ϕ5(d, F ) = (Mon≤d,x,Mond−d1,x, . . . ,Mond−ds,x).

Lemma 4.15. Let p be a nonzero polynomial in the ring K[x1, . . . , xn, t]
with deg(p) = d. Let ≻grlex be the grevlex ordering on K[x1, . . . , xn] and
≻grlext be the grevlex ordering on K[x1, . . . , xn, t]. Write p as a vector:

P = Macϕ4(d,(p)),≻grlex
.

Let Mon≤d−di,x be equal to {xα1 , . . . ,xαℓ} with for all i and j in {1, . . . , ℓ},
i < j if and only if xαj ≻grlex xαj . Consider the shift s de�ned as follows
and LMs(P ) the leading matrix of P for the shift s.



xαℓ . . . xαi0 . . . 1

s → deg(xαℓ) . . . deg(xαi0 ) . . . 0

P → qℓ(t) . . . qi0(t) . . . q1(t)

LMs(P ) → 0 · · · ai0 . . . a1


The entry ai0 is the pivot of LMs(P ) for i0 in {1, . . . , ℓ}, so qi0 is the s-pivot
of P . The equality

lm≻grlext
(p) = xαi0 tdegt(qi0 )

holds.

Proof. As ≻grlext is an admissible monomial ordering, then for two mono-
mials m1 and m2, if m1 divides m2 then m2 ⪰grlext m1. This means that
we need to compare the xαitdegt(qi) with i ∈ {1, . . . , ℓ} to �nd the leading
monomial of p. Write lm≻grlext

(p) = xαj0 tdegt(qj0 ). Observe that

deg(xαj0 tdegt(qj0 )) = deg(lm≻grlext
(p))

= max
i∈{1,...,ℓ}

(deg(xαitdegt(qi))).
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On the other hand, observe that

rdegs(P ) = max
i∈{1,...,ℓ}

(deg(xαi) + degt(qi))

= max
i∈{1,...,ℓ}

(deg(xαitdegt(qi))).

By De�nition 2.18, for all j in {1, . . . , ℓ} :

deg(xαj tdegt(qj)) = max
i∈{1,...,c}

(deg(xαitdegt(qi))) ⇐⇒ aj ̸= 0.

We have shown that aj0 ̸= 0 but now we must show that i0 = j0. Observe
that if we show that for all i in {1, . . . , ℓ},

deg(xαitdegt(qi)) = rdegs(P ) implies that j0 ≥ i

then we are done. Note that it is equivalent to: for all i in {1, . . . , ℓ},

deg(xαitdegt(qi)) = rdegs(P ) implies that xαi ≼grlex xαj0 .

Let i be in {1, . . . , ℓ} such that deg(xαitdegt(qi)) = rdegs(P ). We deduce
that deg(xαitdegt(qi)) = deg(xαj0 tdegt(qj0 )), as xαitdegt(qi) ≼grlext x

αj0 tdegt(qj0 ).
There are two possibilities.

� If degt(qj0) < degt(qi), then deg(xαi) < deg(xαj0 ) which implies that
xαi ≺grlex xαj0 .

� If degt(qj0) = degt(qi), then deg(xαi) = deg(xαj0 ). As the inequality
xαitdegt(qi) ≼grlext x

αj0 tdegt(qj0 ) holds, then xαi ≼grlex xαj0 .

Example 4.16. Let p = x2 + (t2 − t)y + 2t3 be a polynomial in K[x, y, t]
and let s = (2, 2, 2, 1, 1, 0) be a shift. We use Lemma 4.15 to �nd its leading
monomial:

P =
(x2 xy y2 x y 1
1 0 0 0 t2 − t 2

)

LMs(P ) =
(x2 xy y2 x y 1
0 0 0 0 1 2

)
Observe that the s-pivots of P is t2− t which column index is y. In fact,

yt2 is the leading monomial of p for the grevlex ordering.

For the following de�nition we refer the reader to [3, De�nition 2.1].

De�nition 4.17. Let I be an ideal of K[x1, . . . , xn, t] and ≻ be an admissi-
ble monomial ordering on K[x1, . . . , xn, t]. The set I is t-stabilized if for all
m ∈ lm≻(I) such that t divides m and for all i in {1, . . . , n}, m

t
xi ∈ lm≻(I).
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Lemma 4.18. Let I be a zero-dimensional ideal of K[x1, . . . , xn, t] and ≻
be an admissible monomial ordering on K[x1, . . . , xn, t]. If the ideal I is
t-stabilized and G = (g1, . . . , gs) is a Gröbner basis of (I,≻). then for all
monomial m in lm≻(K[x1, . . . , xn, t])\ lm≻(I) there exists i in {1, · · · , s}
such that lm≻(gi) = mtj with j in N.

Proof. Suppose without loss of generality that G is minimal. Let m be
a monomial of lm≻(K[x1, . . . , xn, t])\ lm≻(I). As I is zero-dimensional, by
Proposition 2.40 there exists j in N such that mtj lies in lm≻(I). Suppose
that j is the smallest positive integer such that mtj lies in lm≻(I). As m
is not in lm≻(I), then j ≥ 1. By De�nition 2.36, there exists g in G such
that lm≻(g) divides mtj. If lm≻(g) = mtj, then we are done. If there is
no f in G such that lm≻(f) = mtj, there exists a monomial m0 such that
lm≻(g)m0 = mtj and m ̸= 1. The variable t does not divide m0 because
mtj−1 does not lie in lm≻(I), so t divides lm≻(g). As m0 is not 1, there
exists i in {1, . . . , n} such that there exists a monomialm1 withm0 = m1xi.

As I is t-stabilized, the monomial lm≻(g)
t

xi lies in lm≻(I). Observe that

lm≻(g)

t
xim1 = mtj−1.

As lm≻(g)
t

xim1 lies in lm≻(I), this is a contradiction with the minimality of
j.

Theorem 1. Popov-Structure theorem on Gröbner basis

Let I be an ideal of K[x1, . . . , xn, t], let ≻grlext be the grevlex ordering on the
ring K[x1, . . . , xn, t] and ≻grlex be the grevlex ordering on K[x1, . . . , xn]. Let
(g1, . . . , gℓ) be a Gröbner basis of (I,≻grlext) with for all i, j ∈ {1, · · · , ℓ},
i < j implies that the x part of lm≻grlext

(gi) is greater than the x part of
lm≻grlext

(gj) for ≻grlex. De�ne s the shift that gives to a column the degree
of the monomial which index this column as in Lemma 4.15. Write

Gi = Macϕ4(deg(gi),(gi)),≻grlex
,

then:
1) The matrix

G =

G1
...
Gℓ


is in s-weak-Popov form.

2) If (g1, . . . , gℓ) is the minimal reduced Gröbner basis of (I,≻grlext),
then G is in s-Popov form.

3) If I is zero-dimensional and t-stabilized and (g1, . . . , gℓ) is the minimal
reduced Gröbner basis of (I,≻grlext), then the sum of maximal degrees
over each column of G is equal to the cardinal of the set of monomials
lm≻grlext

(K[x1, . . . , xn, t])\ lm≻grlext
(I).
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Proof. 1) Observe that

LMs(G) =

LMs(G1)
...

LMs(Gℓ)

 .

By Lemma 4.15, the pivot of LMs(Gi) is in the column indexed by
the x part lm≻grlext

(gi) for all i in {1, . . . , ℓ}. By our hypothesis on
the x parts of the lm≻grlext

(gi), the matrix LMs(G) is in row echelon
form. Then by De�nition 2.20, G is in s-weak-Popov form.

2) Let m be a monomial that is the index of a column that contain a s-
pivot. If an entry of this column that is not the s-pivot has a greater
or equal degree than the s-pivot that means that there exists gi and
gj such that lm≻grlext

(gi) divides one of the monomial of gj. That
is not possible because (g1, . . . , gℓ) is the minimal reduced Gröbner
basis of (I,≻grlext), so by De�nition 2.22 G is in s-Popov form.

3) As (g1, . . . , gℓ) is the minimal reduced Gröbner basis of (I,≻grlext),
the monomials in the polynomials g1, . . . , gℓ are elements of

(lm≻grlext
(K[x1, . . . , xn, t])\ lm≻grlext

(I))
⋃

i∈1,...,ℓ

{lm≻grlext
(gi)}.

From this and Lemma 4.18 that can be applied as I is zero-dimensional
and t-stabilized, we deduce that in the matrix G, a column that does
not contain a s-pivot is a column of zeroes. Write Gi,j the entries of
G, note that∑

j∈{1,...,c}

max
i∈{1,...,ℓ}

(degt(Gi,j)) =
∑

column j with a pivot

max
i∈{1,...,ℓ}

(degt(Gi,j)),

as (g1, . . . , gℓ) is minimal reduced,

=
∑

i∈{1,...,ℓ}

degt(lm≻grlext
(gi)).

We prove that the cardinal of the set

lm≻grlext
(K[x1, . . . , xn, t])\ lm≻grlext

(I)

is equal to ∑
i∈{1,...,ℓ}

degt(lm≻grlext
(gi)).

By Lemma 4.18,

lm≻grlext
(K[x1, . . . , xn, t])\ lm≻grlext

(I) =
⊔

i∈{1,...,ℓ}

Ei
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where Ei is the set of elements of lm≻grlext
(K[x1, . . . , xn, t])\ lm≻grlext

(I)
that have the same x part as lm≻grlext

(gi). Write

lm≻grlext
(gi) = mtdegt(lm≻grlext

(gi))

with m is the x part, the cardinal of Ei is degt(lc≻grlext
(gi)). As the

cardinal of
⊔

i∈{1,...,ℓ}Ei is equal to∑
i∈{1,...,ℓ}

degt(lm≻grlext
(gi))

we are done

Proposition 4.19. Let F = (f1, . . . , fℓ) be a sequence of polynomials of
the ring K[x1, . . . , xn, t] with deg(fi) = di and I = ⟨f1, . . . , fℓ⟩. Let ≻grlex

be the grevlex ordering on K[x1, . . . , xn] and ≻grlext be the grevlex ordering
on K[x1, . . . , xn, t]. Let d be an integer, write the K[t]-module

Ed = ⟨{mfi | i ∈ {1, . . . , ℓ},m ∈ Mon≤d−di,x}⟩K[t]

and the matrix
M = Macϕ4(d,F )),≻grlex

.

Let s be the shift that gives to a monomial its degree. Let M̃ be a s-weak-
Popov form of M . Let f be a polynomial of Ed, then there exists a row of
the matrix M̃ that represents a polynomial g such that lm≻grlext

(g) divides
lm≻grlext

(f).

Proof. It is clear that the rows of M generate the K[t]-module Ed. By

Proposition 2.11 and Proposition 2.23, the rows of the matrix M̃ also gen-
erate Ed. Let f be in Ed. Then there exists a row vector B with entries in
K[t] such that

Macϕ5(deg(f),(f))),≻grlex
= BM̃.

As M̃ is in s-weak-Popov form we can apply Proposition 2.26 and de-
duce that the s-pivot of Macϕ5(deg(f),(f))),≻grlex

has the same column index

as one of a row of M̃ . Moreover, the degree of the s-pivots is greater or
equal than the degree of the s-pivot of this row in M̃ . Let us call g the
polynomial that is represented by this row in M̃ . By Lemma 4.15 that
means exactly that lm≻grlext

(g) divides lm≻grlext
(f).

Proposition 4.20. Let F = (f1, . . . , fℓ) be a regular sequence of polyno-
mials of the ring K[x1, . . . , xn, t] with deg(fi) = di and I = ⟨f1, . . . , fℓ⟩.
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Let ≻grlex be the grevlex ordering on K[x1, . . . , xn] and ≻grlext be the grevlex
ordering on K[x1, . . . , xn, t]. Let dmax be equal to the Macaulay bound of F :

ℓ∑
i=1

(di − 1) + 1.

Then Algorithm 4 return a Gröbner basis of (I,≻grlext).

Proof. Write the K[t]-module

Edmax = ⟨{mfi | i ∈ {1, . . . , ℓ},m ∈ Mon≤dmax−di,x}⟩K[t].

By 3.9, the K[t]-vector space

V = ⟨mfi | i ∈ {1, . . . , ℓ},m ∈ Mon≤dmax−di⟩K

contains a Gröbner basis G of (I,≻grlext) as dmax is the Macaulay bound
and as F is regular. Let g be in G, then g is in V . As V ⊆ Edmax , g is
in Edmax . Write G̃ the output of Algorithm 4. By Proposition 4.19, there
exists g̃ in G̃ such that lm≻grlext

(g̃) divides lm≻grlext
(g). As G is a Gröbner

basis of (I,≻grlext), then G̃ is a Gröbner basis of (I,≻grlext).

Algorithm 4 grevlex PM Lazard's Algorithm

Input: polynomials F = (f1, . . . , fℓ) of K[x1, . . . , xn, t] with deg(fi) = di
and an integer dmax.

Output: A Gröbner basis of (⟨f1, . . . , fℓ⟩,≻grlext)
1: G = {}
2: dmin = mini∈{1,··· ,ℓ}(deg(fi)).
3: for d = dmin to dmax do

4: M = Macϕ4(d,F )),≻grlex

5: md = vector column that contain all the monomials in x of degree
at most d in decreasing order for ≻grlex.

6: s = row vector of same length as md that gives the degree of all the
monomials in x of degree at most d in decreasing order for ≻grlex.

7: M̃ = the s-Popov form of M
8: I = M̃ ×md

9: G = G
⋃
{h ∈ I|∀g ∈ G

⋃
I, g ̸= h, lm≻grlext

(g) does not divide
lm≻grlext

(h)}
10: return G
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The foolowing de�nition can be found in [6, De�nition 25.8]

De�nition 4.21. Let f, g : N → R be positive. Then we write f ∈ O∼(g),
if f(n) ∈ g(n)(log2(3 + g(n))))O(1) or equivalently, if there are constants
N, c ∈ N such that f(n) ≤ g(n)(log2(3 + g(n)))c for all n ≥ N .

The following theorem can be found in [16, Section 5.1].

Theorem 4.22. Let M be a matrix in K[t]r×c of degree at most d with
r ≤ c and s be a positive shift. There exists a deterministic algorithm which
computes the Popov form of M using O∼(rω−1c(d+amp(s))) operations in
K.

The following result can be found in [19, Section 1].

Theorem 4.23. Let M be a matrix in K[t]r×c of degree at most d with
r ≥ c. There is a deterministic algorithm which computes a row basis of
M using O∼(cω−1rd) operations in K.

Let F = (f1, . . . , fℓ) be a sequence of polynomials in K[x1, . . . , xn].
Suppose that F is regular De�nition 2.47 and that ⟨f1, . . . , fℓ⟩ is zero-
dimensional. That implies that ℓ = n by [11, page20,de�nition 19].

Let us suppose that for all i in {1, . . . , n}, deg(fi) = d in N. Now write
the Macaulay bound:

D = 1− n+
n∑

i=1

d = 1 + n(d− 1).

The goal is to compare the number of operations in K that Algorithms 2
and 4 use to compute the row echelon form and the s-Popov form of the
larger Macaulay matrices that appear in those algorithms.

1) Analysis for Algorithm 2.
As seen in Section 3.3, the number of rows is n

(
D−d+n

n

)
and the num-

ber of columns is
(
D+n
n

)
in the �nal Macaulay matrix called M . By

Proposition 3.15, we can suppose there is more rows than columns in
the matrix. By Theorem 3.18, it takes

rank(M)ω−2n

(
D − d+ n

n

)(
D + n

n

)
≤
(
D + n

n

)ω−1

n

(
D − d+ n

n

)
operations in K.

2) Analysis for Algorithm 4.
In Algorithm 4, consider that xn = t to have the same situation as
above. The number of rows is n

(
D−d+n−1

n−1

)
and the number of columns

is
(
D+n−1
n−1

)
in the �nal Macaulay matrix called M1 in K[t]r×c. Observe
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that the shift s in Algorithm 4 is such that amp(s) ≤ D. The �rst
step is to compute M2 a row basis of M1 using

cω−1rd ≤ rcω−1(d+D)

operations in K by Theorem 4.23. This theorem can be applied as
there is more rows than column in the Macaulay matrix by Sec-
tion 3.3. The second step is to compute the s-Popov form of M2

(which is the one of M1) in K[t]rank(M1)×c, by Theorem 4.22 it takes

rank(M1)
ω−1c(d+D) ≤ rank(M1)c

ω−1(d+D)

≤ rcω−1(d+D)

operations in K. We deduce that it takes

rcω−1(d+D) = n

(
D − d+ n− 1

n− 1

)(
D + n− 1

n− 1

)ω−1

(d+D)

operations in K to compute the s-Popov form of M1.
Let us compare these two numbers of operations.(

D+n
n

)ω−1
n
(
D−d+n

n

)
n
(
D−d+n−1

n−1

)(
D+n−1
n−1

)ω−1
(d+D)

=

(
D − d+ n

n

)(
D + n

n

)ω−1(
1

D + d

)
=

(
(n− 1)d+ 1

n

)(
nd+ 1

n

)ω−1(
1

(n+ 1)d− n+ 1

)
.

This last result is less than(
(n− 1)d

n

)
dω−1

(
1

(n+ 1)d

)
=

(
dω−1

n

)(
n− 1

n+ 1

)
.

Theorem 2. Let F = (f1, . . . , fℓ) be a regular sequence of polynomials in
K[x1, . . . , xn] with deg(fi) = di. Suppose ⟨f1, . . . , fℓ⟩ is zero dimensional.
Write D =

∑ℓ
i=1(di − 1) + 1. The number of operations in K that Algo-

rithm 4 uses is

O∼

(
n

(
D − d+ n− 1

n− 1

)(
D + n− 1

n− 1

)ω−1

(d+D)

)
.

Proof. It is Item 2)

Conclusion: Let A and B be respectively the number of operations in
K used in Algorithms 2 and 4. Then

A

B
≥
(
dω−1

n

)(
n− 1

n+ 1

)
.
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