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Building cryptography from (quantum-)hard problems

Multivariate Quadratic Problem - MQ(n, m, q)
Find a solution (if any) x ∈ Fn

q to a system of m quadratic
equations in n variables

P(x) = 0 ∈ Fm
q

This problem is NP-hard: reduces to SAT

Multivariate Quadratic Cryptography
A multivariate signature scheme is defined by a key pair (P, S):

• The public key P is an instance of MQ(n, m, q), n > m.
• The secret key S enables, for all t ∈ Fm

q , to efficiently find
x ∈ Fn

q s.t. P(x) = t
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Quadratic equations and square matrices

Example

3 · x2 + 2 · xy + 1 · y2

=
(
x y

)
·
(

3 2
0 1

)
·
(

x
y

)

Representation

n∑
1≤i ,j≤n

ai ,jxixj =
(
x1 · · · xn

)
·


a1,1 · · · a1,n

...
...

an,1 · · · an,n

 ·


x1
...

xn



Structured equations ⇐⇒ structured matrices
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UOV: Original formulation

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]
Secret key: - m quadratic polynomials xT Fix ∈ Fq[x1, . . . , xn]

linear in x1, . . . , xm.
- invertible change of variables A.

Public key: m quadratic polynomials xT Pix.
P = F ◦ A = (AT F1A, . . . , AT FmA)

A

Public key

Secret key

Figure 1: UOV key pair in F257
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Naming conventions and parameters
x ∈ Fn

q is a signature for message t ∈ Fm
q if P(x) = t.

In practice: 2m <︸ ︷︷ ︸
[KS98]

n
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UOV: Signatures and Parameters

Small signatures
x ∈ Fn

q is a signature for message t ∈ Fm
q if P(x) = t.

[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

Figure 2: Modern UOV parameters
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UOV: Alternative formulation

P, S = (P1, . . . , Pm), (F1, . . . , Fm, A)

Equivalent characterisation of the trapdoor [Beullens 2020]
Trapdoor: subspace O ⊂ Fn

q of dimension m such that

∀(x, y) ∈ O2, xT P1y = · · · = xT Pmy = 0

Observation 1
The first m columns of A−1 form a basis of O.

Observation 2
All vectors in O are signatures of the message (0, . . . , 0) ∈ Fm

q .
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Cryptanalysis

Forgery
Goal: Find a signature x ∈ Fn

q for a single message t ∈ Fm
q .

Vt := {x ∈ Fn
q | P(x) = t}

Find a point in a variety of dimension n − m

Key recovery
Goal: find an equivalent secret key.

O ⊂ {x ∈ Fn
q | P(x) = 0}

Find a linear subspace of dimension m in V0
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Contributions

Main result
Given one vector x ∈ O and the public key, compute a basis of
O in polynomial-time O(mnω), 2 ≤ ω ≤ 3.

n,m 112, 44 160, 64 184, 72 244, 96
Time 1.7s 4.4s 5.7s 13.3s

Figure 3: Implementation of our attack with sagemath on a laptop

Corollary
Decide whether “x ∈ O?” in polynomial-time O(mnω).

n,m 112, 44 160, 64 184, 72 244, 96
Time 0.2s 0.5s 0.7s 1.5s

Figure 4: Implementation of “x ∈ O?” with sagemath on a laptop
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Previous work

Side-Channel Attacks
[Aulbach, Campos, Krämer, Samardjiska, Stöttinger CHES2023]
previously obtained a similar result, with a polynomial key
recovery from one vector.

n 112 160 184 244
Time 19m34s 3h7m55s 11h41m7s

Figure 5: Implementation in the context of side-channel attacks
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State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Attacks benefit from knowledge of some vectors of O:
additional equations in quadratic system

→ Reconciliation

This work
Any vector in O characterizes it → Polynomial reconciliation

PP Find x ∈ OExponential
Exponential

Find x ∈ O

O

Polynomial
Find x ∈ O

OThis work
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Contribution: The algorithm

P, S : (P1, . . . , Pm), O

Equivalent characterisation of the trapdoor [Beullens 2020]
Trapdoor: subspace O of dimension m such that

∀(x, y) ∈ O2, xT P1y = · · · = xT Pmy = 0

Reformulation

∀x ∈ O, O ⊂ J(x) := ker(xT P1) ∩ ... ∩ ker(xT Pm)

Observation
J(x) is of dimension n − m generically.

11/16



Contribution: The algorithm

P, S : (P1, . . . , Pm), O

Equivalent characterisation of the trapdoor [Beullens 2020]
Trapdoor: subspace O of dimension m such that

∀(x, y) ∈ O2, xT P1y = · · · = xT Pmy = 0

Reformulation

∀x ∈ O, O ⊂ J(x) := ker(xT P1) ∩ ... ∩ ker(xT Pm)

Observation
J(x) is of dimension n − m generically.

11/16



Contribution: The algorithm

P, S : (P1, . . . , Pm), O

Equivalent characterisation of the trapdoor [Beullens 2020]
Trapdoor: subspace O of dimension m such that

∀(x, y) ∈ O2, xT P1y = · · · = xT Pmy = 0

Reformulation

∀x ∈ O, O ⊂ J(x) := ker(xT P1) ∩ ... ∩ ker(xT Pm)

Observation
J(x) is of dimension n − m generically.

11/16



Contribution: The algorithm

Reduction
Restriction P|J(x) → UOV instance with same trapdoor but less
variables.

Pi = AT


0

A ∈ Fn×n
q

=⇒ Pi |J(x) = BT

 0
B ∈ Fn−m×n−m

q

Concluding the attack
n − m ≤ 2m =⇒ Pi |J(x) is singular.
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Contribution: Complexity analysis

Complexity of the attack

1 Computing J(x), kernel of m × n matrix O(mn2)

2 Computing the restrictions: Pi |J(x) = BT PiB O(mnω)
3 Kernel computations O(mnω)
4 Total cost: O(mnω)
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Multivariate Post-Quantum Zoo at NIST

UOV

MAYO

UOV+̂
VOX

SNOVA

T-UOV

PrOV QR-UOV

MQOM

Biscuit

MiRitH

UOV Family
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Key recovery attacks from “x ∈ O?” on UOV(+̂)

UOV+̂
Replace t ≤ 8 equations with random equations and mix.

P = S · (F1 ◦ A, . . . , Ft ◦ A, Ft+1 ◦ A, . . . , Fm ◦ A)

Generalise “x ∈ O?” to UOV+̂
• This work: need t vectors in O to decide in O(mnω)

• [P. 2024b]: need 1 vector to decide in O(qtnω)

Improve Kipnis-Shamir attack against UOV+̂ [P. 2024b]
=⇒ O(q3t) → O(q2t · poly(n))
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Perspectives

Contributions
• One secret vector → polynomial key recovery.
• Distinguish secret vectors from random signatures of 0.

New directions
• Efficiently generalize tools to more UOV schemes
• Key recovery attacks targeting one vector

Links
https://github.com/pi-r2/OneVector

16/16
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Application to UOV variants in the NIST competition

For schemes that are instances of UOV → direct application

• QR-UOV
• SNOVA
• PrOV
• Result already known on MAYO [Beullens 2021]

More work required for schemes using modified UOV keys.

• Can it be faster on UOV+̂ ?
• T-UOV
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