Multivariate Signature Schemes and Cryptanalysis of Early Proposals

Pierre Pébereau Sorbonne Université, LIP6, CNRS, Thales SIX

July 10, 2023

Public Key Signature Schemes

Diffie, Hellman, 1976]

Public Key Signature Schemes

Diffie, Hellman, 1976]

Public Key Signature Schemes

Diffie, Hellman, 1976]

Public Key Signature Schemes

Diffie, Hellman, 1976]

Traditional Solutions

- Discrete logarithm (DSA, ElGamal, ECDSA, ...)
- Factoring (RSA)

Traditional Solutions

- Discrete logarithm (DSA, ElGamal, ECDSA, ...)
- Factoring (RSA)
- \rightarrow Polynomial for a quantum computer

[Shor 94]

Traditional Solutions

- Discrete logarithm (DSA, ElGamal, ECDSA, ...)
- Factoring (RSA)

\rightarrow Polynomial for a quantum computer **Post-quantum signature schemes?**

[Shor 94]

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally

• The legitimate signer solves a linear system to sign.

Unbalanced Oil and Vinegar, informally

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD ۲

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin	n, 1999]
• The legitimate signer solves a linear system to sign.	EASY
• An adversary solves a quadratic system to forge a signature.	HARD
• The receiver evaluates a quadratic map to verify a signature.	EASY

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature.

Multivariate vs Post-Quantum standards

Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...

EASY

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature.

Multivariate vs Post-Quantum standards

- Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...
- NIST Standards: Dilithium, Falcon, SPHINCS+ (Lattices & Hash)

EASY

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature.

Multivariate vs Post-Quantum standards

- Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...
- NIST Standards: Dilithium, Falcon, SPHINCS+ (Lattices & Hash)
- Shorter signatures: suited for low bandwidth applications

EASY

UOV: Original formulation

Unbalanced Oil and Vinegar

Kipnis, Patarin, Goubin, 1999]

Private Key: - structured symmetric matrices $F = (F_1, \dots, F_k)$ in $(\mathbb{F}_q^{n \times n})^k$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

Kipnis, Patarin, Goubin, 1999]

Private Key: - structured symmetric matrices $F = (F_1, ..., F_k)$ in $(\mathbb{F}_q^{n \times n})^k$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: symmetric matrices $G = F \circ A$

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

Kipnis, Patarin, Goubin, 1999]

Private Key: - structured symmetric matrices $F = (F_1, ..., F_k)$ in $(\mathbb{F}_q^{n \times n})^k$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: symmetric matrices $G = F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\mathbf{x}^T F_i \mathbf{x}$ linear in x_1, \ldots, x_k Public key polynomials: k quadratic forms $\mathbf{x}^T G_i \mathbf{x}$ in n variables.

UOV: Original formulation

Unbalanced Oil and Vinegar

Kipnis, Patarin, Goubin, 1999]

Private Key: - structured symmetric matrices $F = (F_1, ..., F_k)$ in $(\mathbb{F}_q^{n \times n})^k$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: symmetric matrices $G = F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\mathbf{x}^T F_i \mathbf{x}$ linear in x_1, \ldots, x_k Public key polynomials: k quadratic forms $\mathbf{x}^T G_i \mathbf{x}$ in n variables. $x_1, \ldots, x_k \rightarrow$ oil variables $x_k, \ldots, x_n \rightarrow$ vinegar variables

UOV: Original formulation

Unbalanced Oil and Vinegar

Kipnis, Patarin, Goubin, 1999]

Private Key: - structured symmetric matrices $F = (F_1, ..., F_k)$ in $(\mathbb{F}_q^{n \times n})^k$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: symmetric matrices $G = F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\mathbf{x}^T F_i \mathbf{x}$ linear in x_1, \ldots, x_k Public key polynomials: k quadratic forms $\mathbf{x}^T G_i \mathbf{x}$ in n variables. $x_1, \ldots, x_k \rightarrow \mathbf{oil}$ variables $x_k, \ldots, x_n \rightarrow \mathbf{vinegar}$ variables In practice: $\mathbf{n} \leq \mathbf{3k}$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_q^k$ is a vector $\boldsymbol{x} \in \mathbb{F}_q^n$ such that $1 \leq i \leq k, G_i(\boldsymbol{x}) = m_i$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that $1 \leq i \leq k, G_i(\mathbf{x}) = m_i$

• Alice signs: x solution of a linear system in x_1, \ldots, x_k .

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that $1 \leq i \leq k, G_i(\mathbf{x}) = m_i$

- Alice signs: **x** solution of a linear system in x_1, \ldots, x_k .
- Bob verifies: checks that for $1 \le i \le k$, $G_i(\mathbf{x}) = m_i$. •

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{a}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{a}^{n}$ such that $1 \leq i \leq k, G_i(\mathbf{x}) = m_i$

- Alice signs: **x** solution of a linear system in x_1, \ldots, x_k .
- Bob verifies: checks that for $1 \le i \le k$, $G_i(\mathbf{x}) = m_i$. •
- Eve forges: x solution of a polynomial system in x_1, \ldots, x_n .

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace \mathcal{O} of dimension k such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \ldots = \boldsymbol{x}^T G_k \boldsymbol{y} = 0$$

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace \mathcal{O} of dimension k such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \ldots = \boldsymbol{x}^T G_k \boldsymbol{y} = 0$$

Figure: UOV Key Pair in \mathbb{F}_{257}

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = M_i \}$$

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_{q}^{n}$ for a **single** message $M \in \mathbb{F}_{q}^{k}$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = M_i \}$$

Computational problem: Find a point in a variety of dimension n - k

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = M_i \}$$

Computational problem: Find a point in a variety of dimension n - k

Key recovery

Goal: find an equivalent secret key to sign **any** message.

$$\mathcal{O} \subset \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = 0 \}$$

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = M_i \}$$

Computational problem: Find a point in a variety of dimension n - k

Key recovery

Goal: find an equivalent secret key to sign **any** message.

$$\mathcal{O} \subset \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = 0 \}$$

Computational problem: Find a linear subspace of dimension k in V(0)

Main result

• Polynomial-time algorithm that takes as input **one vector** in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_q^n$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

P. 2023

Main res<u>ult</u>

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

 An attacker needs to find a single vector in O to retrieve the secret **key** up to equivalence. This is enough to sign **any** message.

P. 2023

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in O to retrieve the secret **key** up to equivalence. This is enough to sign **any** message.
- Finding a vector of O remains challenging.

P. 2023

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system.

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

This work

Any vector in \mathcal{O} characterizes it. \rightarrow Polynomial reconciliation

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

Beullens 2020

Trapdoor: subspace \mathcal{O} of dimension k such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_k \boldsymbol{y} = 0$$

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension k such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_k \boldsymbol{y} = 0$$

Reformulation

$$\forall \boldsymbol{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\boldsymbol{x}) := \ker(\boldsymbol{x}^{\mathsf{T}} G_1) \cap ... \cap \ker(\boldsymbol{x}^{\mathsf{T}} G_k)$$

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

Beullens 2020

Trapdoor: subspace \mathcal{O} of dimension k such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_k \boldsymbol{y} = 0$$

Reformulation

$$\forall \mathbf{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\mathbf{x}) := \ker(\mathbf{x}^T G_1) \cap ... \cap \ker(\mathbf{x}^T G_k)$$

Observation

 $J(\mathbf{x})$ is of dimension n-k.

Public key:
$$G \in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x} \in \mathbb{F}_q^n$ dim $(J(m{x})) = n-k$

Reduction

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Reduction

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Reduction

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Reduction

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Reduction

Contribution: Complexity analysis

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Complexity of the attack

1 Computing B, a basis of $J(\mathbf{x})$

 $O(n^{\omega})$ and $2 \leq \omega \leq 3$

Contribution: Complexity analysis

Public key:
$$G\in (\mathbb{F}_q^{n imes n})^k$$
 Secret vector: $m{x}\in \mathbb{F}_q^n$ dim $(J(m{x}))=n-k$

Complexity of the attack

1 Computing *B*, a basis of $J(\mathbf{x})$ $O(n^{\omega})$ and $2 \le \omega \le 3$

2 Computing the restrictions: $G_{i|J(\mathbf{x})} = B^T G_i B$

 $O(kn^{\omega})$

Contribution: Complexity analysis

Public key: $G \in (\mathbb{F}_q^{n \times n})^k$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - k$

Complexity of the attack

- **1** Computing *B*, a basis of $J(\mathbf{x})$ $O(n^{\omega})$ and $2 \le \omega \le 3$
- **2** Computing the restrictions: $G_{i|J(\mathbf{x})} = B^T G_i B$
- 3 Kipnis-Shamir attack or kernel computations
- **4** Total cost: $O(kn^{\omega})$

 $O(kn^{\omega})$ $O(kn^{\omega})$

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_q	p k (bytes)	sk (bytes)	cpk (bytes)	sig+salt (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_q	pk (bytes)	sk (bytes)	cpk (bytes)	sig+salt (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

n	112	160	184	244
Time	1.7s	4.4s	5.7s	13.3s

Figure: Implementation of our attack with native sagemath functions on a laptop

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_q	pk (bytes)	sk (bytes)	cpk (bytes)	sig+salt (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

n	112	160	184	244
Time	1.7s	4.4s	5.7s	13.3s

Figure: Implementation of our attack with native sagemath functions on a laptop

Reminder This is the time it takes, given one vector in \mathcal{O} , to retrieve a basis of \mathcal{O} . Pierre Pébereau Multivariate Signature Schemes July 2023 13/17

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in (\mathbb{F}_q^{n \times n})^k, n = \lceil 2.5k \rceil$

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in (\mathbb{F}_q^{n \times n})^k, n = \lceil 2.5k \rceil$

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

• Key size:
$$G \in (\mathbb{F}_q^{n imes n})^k, n = \lceil 2.5k
ceil$$

k	9	10	11	12	13	14	15	16	17
Forgery	0.1s	0.3s	1s	4s	20s	144s	930s	2h	14h
Recovery	40s	1h	2h	> 11000 h					

Figure: CPU-time in \mathbb{F}_{31} with **msolve** [Berthomieu, Eder, Safey el Din, 2021]

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

• Key size:
$$G \in (\mathbb{F}_q^{n imes n})^k, n = \lceil 2.5k
ceil$$

k	9	10	11	12	13	14	15	16	17
Forgery	0.1s	0.3s	1s	4s	20s	144s	930s	2h	14h
Recovery	40s	1h	2h	>11000h					

Figure: CPU-time in \mathbb{F}_{31} with **msolve** [Berthomieu, Eder, Safey el Din, 2021]

Key Recovery

This is the time it takes to retrieve **one** vector in \mathcal{O} .

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_{q}^{n} \mid \forall i \leq k, G_{i}(\boldsymbol{x}) = M_{i} \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_{q}^{n} \mid \forall i \leq k, G_{i}(\boldsymbol{x}) = M_{i} \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Key recovery from forgery

Attempt to forge a signature x for the message 0 until x belongs to O.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^k$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq k, G_i(\boldsymbol{x}) = M_i \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Key recovery from forgery

Attempt to forge a signature x for the message 0 until x belongs to O.

n	112	160	184	244
Time	0.2s	0.5s	0.7s	1.5s

Figure: Implementation of our test $x \in \mathcal{O}$? on a laptop

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

Improve forgery attacks to improve key recovery attacks

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: **two** vectors in \mathcal{O} at once

[Beullens 2020]

Contribution

[Beullens 2020]

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: **two** vectors in \mathcal{O} at once
- Can we find only one vector faster than two?

Contribution

[P. 2023]

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: **two** vectors in \mathcal{O} at once

[Beullens 2020]

- Can we find only one vector faster than two?
- Side-channel attacks [Aulbach, Campos, Kramer, Samardjiska, Stottinger]

Contribution

[P. 2023]

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: **two** vectors in \mathcal{O} at once

[Beullens 2020]

- Can we find only one vector faster than two?
- Side-channel attacks [Aulbach, Campos, Kramer, Samardjiska, Stottinger]

Paper

Preprint to be released, stay tuned!

Thank you for your attention!