Multivariate Signature Schemes and Cryptanalysis of Early Proposals

Pierre Pébereau

Sorbonne Université, LIP6, CNRS, Thales SIX

SORBONNE

 UNIVERSITÉ
THALES

July 10, 2023

Signature Schemes

Public Key Signature Schemes

Alice wants to convince Bob that she wrote the message he received, without trading secrets beforehand.

Alice

Bob

Signature Schemes

Public Key Signature Schemes

Alice wants to convince Bob that she wrote the message he received, without trading secrets beforehand.
\mathcal{S} : Secret Key

Alice

Bob
\mathcal{P} : Public Key

Signature Schemes

Public Key Signature Schemes

Alice wants to convince Bob that she wrote the message he received, without trading secrets beforehand.

Signature Schemes

Public Key Signature Schemes

Alice wants to convince Bob that she wrote the message he received, without trading secrets beforehand.

Signature Schemes

Traditional Solutions

- Discrete logarithm (DSA, EIGamal, ECDSA, ...)
- Factoring (RSA)
\mathcal{S} : Secret Key
$s=\operatorname{Sign}(m, \mathcal{S})$

Signature Schemes

Traditional Solutions

- Discrete logarithm (DSA, EIGamal, ECDSA, ...)
- Factoring (RSA)
\rightarrow Polynomial for a quantum computer
[Shor 94]

Signature Schemes

Traditional Solutions

- Discrete logarithm (DSA, EIGamal, ECDSA, ...)
- Factoring (RSA)
\rightarrow Polynomial for a quantum computer

Post-quantum signature schemes?

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]
 - The legitimate signer solves a linear system to sign.

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]
 - The legitimate signer solves a linear system to sign.
 - An adversary solves a quadratic system to forge a signature. HARD

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999$]$

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature. EASY

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999$]$

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature. EASY

Multivariate vs Post-Quantum standards

- Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally

 TKipnis, Patarin, Goubin 1999- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature. EASY

Multivariate vs Post-Quantum standards

- Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...
- NIST Standards: Dilithium, Falcon, SPHINCS+ (Lattices \& Hash)

Multivariate Signature Scheme

Unbalanced Oil and Vinegar, informally

 Kipnis, Patarin (301) in 1999- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature. EASY

Multivariate vs Post-Quantum standards

- Multivariate: UOV, Rainbow, GeMSS, MAYO, VOX, ...
- NIST Standards: Dilithium, Falcon, SPHINCS+ (Lattices \& Hash)
- Shorter signatures: suited for low bandwidth applications

UOV: Original formulation

Unbalanced Oil and Vinegar

Private Key: - structured symmetric matrices $F=\left(F_{1}, \ldots, F_{k}\right)$ in $\left(\mathbb{F}_{q}^{n \times n}\right)^{k}$

- $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

Private Key: - structured symmetric matrices $F=\left(F_{1}, \ldots, F_{k}\right)$ in $\left(\mathbb{F}_{q}^{n \times n}\right)^{k}$

- $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: symmetric matrices $G=F \circ A$

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar
Private Key: - structured symmetric matrices $F=\left(F_{1}, \ldots, F_{k}\right)$ in $\left(\mathbb{F}_{q}^{n \times n}\right)^{k}$

- $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: symmetric matrices $G=F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{k} Public key polynomials: k quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables.

UOV: Original formulation

Unbalanced Oil and Vinegar
Private Key: - structured symmetric matrices $F=\left(F_{1}, \ldots, F_{k}\right)$ in $\left(\mathbb{F}_{q}^{n \times n}\right)^{k}$

- $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: symmetric matrices $G=F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{k} Public key polynomials: k quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables. $x_{1}, \ldots, x_{k} \rightarrow$ oil variables $x_{k}, \ldots, x_{n} \rightarrow$ vinegar variables

UOV: Original formulation

Unbalanced Oil and Vinegar
Private Key: - structured symmetric matrices $F=\left(F_{1}, \ldots, F_{k}\right)$ in $\left(\mathbb{F}_{q}^{n \times n}\right)^{k}$

- $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: symmetric matrices $G=F \circ A$

Link with standard multivariate cryptography

Private key polynomials: k quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{k} Public key polynomials: k quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables. $x_{1}, \ldots, x_{k} \rightarrow$ oil variables $x_{k}, \ldots, x_{n} \rightarrow$ vinegar variables In practice: $\boldsymbol{n} \leq \mathbf{3 k}$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}
$$

Alice

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}
$$

- Alice signs: \boldsymbol{x} solution of a linear system in x_{1}, \ldots, x_{k}.

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}
$$

- Alice signs: \boldsymbol{x} solution of a linear system in x_{1}, \ldots, x_{k}.
- Bob verifies: checks that for $1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}$.

UOV: Signing process

Signing

A signature for the message $\boldsymbol{m} \in \mathbb{F}_{q}^{k}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}
$$

- Alice signs: \boldsymbol{x} solution of a linear system in x_{1}, \ldots, x_{k}.
- Bob verifies: checks that for $1 \leq i \leq k, G_{i}(\boldsymbol{x})=m_{i}$.
- Eve forges: \boldsymbol{x} solution of a polynomial system in x_{1}, \ldots, x_{n}.

$$
\boldsymbol{x}=\operatorname{Solve}(G(\boldsymbol{m}))
$$

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace \mathcal{O} of dimension k such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\ldots=\boldsymbol{x}^{T} G_{k} \boldsymbol{y}=0
$$

Figure: UOV Key Pair in \mathbb{F}_{257}

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace \mathcal{O} of dimension k such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\ldots=\boldsymbol{x}^{T} G_{k} \boldsymbol{y}=0
$$

Figure: UOV Key Pair in \mathbb{F}_{257}

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-k$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(x)=M_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-k$

Key recovery

Goal: find an equivalent secret key to sign any message.

$$
\mathcal{O} \subset\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=0\right\}
$$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-k$

Key recovery

Goal: find an equivalent secret key to sign any message.

$$
\mathcal{O} \subset\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=0\right\}
$$

Computational problem: Find a linear subspace of dimension k in $V(0)$

Contribution

$$
\begin{array}{|ll}
\text { Input } & \text { Output } \\
\hline G, v \in \mathcal{O}> & O\left(k n^{\omega}\right)
\end{array} \sum^{\sum \mathcal{O}}
$$

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.

Contribution

$$
\begin{array}{lll}
\text { Input } & \text { Output } \\
\hline G, v \in \mathcal{O}> & O\left(k n^{\omega}\right) & \sum \mathcal{O}
\end{array}
$$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Contribution

$$
\begin{array}{lll}
\text { Input } & \text { Output } \\
\hline G, v \in \mathcal{O}> & O\left(k n^{\omega}\right) & \sum \mathcal{O}
\end{array}
$$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in \mathcal{O} to retrieve the secret key up to equivalence. This is enough to sign any message.

Contribution

$$
\begin{array}{|ll}
\text { Input } & \text { Output } \\
\hline G, v \in \mathcal{O}> & O\left(k n^{\omega}\right)
\end{array} \sum^{\sum \mathcal{O}}
$$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in \mathcal{O} to retrieve the secret key up to equivalence. This is enough to sign any message.
- Finding a vector of \mathcal{O} remains challenging.

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system.

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

> [CCCDY08], [Beu20]

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

This work

Any vector in \mathcal{O} characterizes it. \rightarrow Polynomial reconciliation

> [CCCDY08], [Beu20]

G Exponential \sum Find a $v \in \mathcal{O}$

This work

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]
Trapdoor: subspace \mathcal{O} of dimension k such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{k} \boldsymbol{y}=0
$$

Contribution: The algorithm

Equivalent characterisation of the trapdoor

Trapdoor: subspace \mathcal{O} of dimension k such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{k} \boldsymbol{y}=0
$$

Reformulation

$$
\forall \boldsymbol{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\boldsymbol{x}):=\operatorname{ker}\left(\boldsymbol{x}^{\top} G_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\boldsymbol{x}^{T} G_{k}\right)
$$

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension k such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{k} \boldsymbol{y}=0
$$

Reformulation

$$
\forall x \in \mathcal{O}, \quad \mathcal{O} \subset J(x):=\operatorname{ker}\left(x^{T} G_{1}\right) \cap \ldots \cap \operatorname{ker}\left(x^{T} G_{k}\right)
$$

Observation

$J(x)$ is of dimension $n-k$.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters and one secret vector.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters and one secret vector.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters and one secret vector.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters and one secret vector.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters and one secret vector.

Concluding the attack
$n \leq 2 k \rightarrow$ broken in polynomial time.
[Kipnis, Shamir 1998]

Contribution: Complexity analysis

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x}) \quad O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$

Contribution: Complexity analysis

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x})$
$O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$
(2) Computing the restrictions: $G_{i \mid J(x)}=B^{T} G_{i} B$ $O\left(k n^{\omega}\right)$

Contribution: Complexity analysis

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-k$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x})$
$O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$
(2) Computing the restrictions: $G_{i \mid J(x)}=B^{T} G_{i} B$ $O\left(k n^{\omega}\right)$
(3) Kipnis-Shamir attack or kernel computations $O\left(k n^{\omega}\right)$
(4) Total cost: $\boldsymbol{O}\left(\boldsymbol{k n}^{\omega}\right)$

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig+salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig + salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

n	112	160	184	244
Time	1.7 s	4.4 s	5.7 s	13.3 s

Figure: Implementation of our attack with native sagemath functions on a laptop

Contribution: Experimental results

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig+salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

n	112	160	184	244
Time	1.7 s	4.4 s	5.7 s	13.3 s

Figure: Implementation of our attack with native sagemath functions on a laptop

Reminder

This is the time it takes, given one vector in \mathcal{O}, to retrieve a basis of \mathcal{O}.

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k}, n=\lceil 2.5 k\rceil$

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k}, n=\lceil 2.5 k\rceil$

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k}, n=\lceil 2.5 k\rceil$

k	9	10	11	12	13	14	15	16	17
Forgery	0.1 s	0.3 s	1 s	4 s	20 s	144 s	930 s	2 h	14 h
Recovery	40 s	1 h	2 h	$>11000 \mathrm{~h}$					

Figure: CPU-time in \mathbb{F}_{31} with msolve [Berthomieu, Eder, Safey el Din, 2021]

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{k}, n=\lceil 2.5 k\rceil$

k	9	10	11	12	13	14	15	16	17
Forgery	0.1 s	0.3 s	1 s	4 s	20 s	144 s	930 s	2 h	14 h
Recovery	40 s	1 h	2 h	$>11000 \mathrm{~h}$					

Figure: CPU-time in \mathbb{F}_{31} with msolve [Berthomieu, Eder, Safey el Din, 2021]

Key Recovery

This is the time it takes to retrieve one vector in \mathcal{O}.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$

Key recovery from forgery

Attempt to forge a signature \boldsymbol{x} for the message 0 until \boldsymbol{x} belongs to \mathcal{O}.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{k}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq k, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$

Key recovery from forgery

Attempt to forge a signature \boldsymbol{x} for the message 0 until \boldsymbol{x} belongs to \mathcal{O}.

n	112	160	184	244
Time	0.2 s	0.5 s	0.7 s	1.5 s

Figure: Implementation of our test $\boldsymbol{x} \in \mathcal{O}$? on a laptop

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: two vectors in \mathcal{O} at once
[Beullens 2020]

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: two vectors in \mathcal{O} at once
[Beullens 2020]
- Can we find only one vector faster than two?

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: two vectors in \mathcal{O} at once
[Beullens 2020]
- Can we find only one vector faster than two?
- Side-channel attacks [Aulbach, Campos, Kramer, Samardjiska, Stottinger]

Perspectives

Contribution

- One secret vector \rightarrow equivalent easy UOV instance.
- Forgery attack \rightarrow key recovery attack.

New directions

- Improve forgery attacks to improve key recovery attacks
- Key recovery attacks: two vectors in \mathcal{O} at once [Beullens 2020]
- Can we find only one vector faster than two?
- Side-channel attacks [Aulbach, Campos, Kramer, Samardjiska, Stottinger]

Paper

Preprint to be released, stay tuned!

Thank you for your attention!

