Cryptanalysis of multivariate signatures from a geometric point of view

Can you find a large linear subspace in an algebraic set?

Pierre Pébereau Sorbonne Université, LIP6, CNRS, Thales SIX

April 25th, 2025

Motivation: Post Quantum Cryptography

Quantum Cryptanalysis

Since [Shor 1994], polynomial-time quantum algorithms for

classical cryptographic problems.

Motivation: Post Quantum Cryptography

Quantum Cryptanalysis

Since [Shor 1994], polynomial-time quantum algorithms for classical cryptographic problems.

"Quantum-hard" problems for cryptography

- Finding short vectors in Euclidean lattices.
- Decoding error-correcting codes.
- Computing isogenies between elliptic curves.
- Solving systems of polynomial equations.

Motivation: Post Quantum Cryptography

Quantum Cryptanalysis

Since [Shor 1994], polynomial-time quantum algorithms for classical cryptographic problems.

"Quantum-hard" problems for cryptography

- Finding short vectors in Euclidean lattices.
- Decoding error-correcting codes.
- Computing isogenies between elliptic curves.
- Solving systems of polynomial equations.

NIST PQC Standardisation: Additional signatures

- Round 1: 11/40 schemes based on polynomial systems
- Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main interest: short signatures and fast algorithms.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

• Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.
- Forge: signing without S requires $> 2^{\lambda}$ elementary operations.

Security level	1		V
λ	128	192	256

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.
- Forge: signing without S requires $> 2^{\lambda}$ elementary operations.

Security level	1		V
λ	128	192	256

Multivariate cryptography

• Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^s$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_s(\mathbf{x}))$

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.
- Forge: signing without ${\mathcal S}$ requires $>2^\lambda$ elementary operations.

Security level	1		V
λ	128	192	256

Multivariate cryptography

- Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^s$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_s(\mathbf{x}))$
- Secret key: a way to find "preimages" $\pmb{x} \in \mathbb{F}_q^n$ such that: $\mathcal{P}(\pmb{x}) = \mathcal{H}(\textit{message})$

Crash course on polynomial systems

Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $I = \langle p_1(\mathbf{x}), \dots, p_s(\mathbf{x}) \rangle$ $I := \{\sum_{i=1}^s a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_q[\mathbf{x}]^s\}$

$$I = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

Crash course on polynomial systems

Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $I = \langle p_1(\mathbf{x}), \dots, p_s(\mathbf{x}) \rangle$ $I := \{\sum_{i=1}^{s} a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_a[\mathbf{x}]^s\}$

$$I = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

Geometry

This ideal defines a variety

$$V(I) = \{ \boldsymbol{x} \in \overline{\mathbb{F}}_q^n, \forall p \in I, p(\boldsymbol{x}) = 0 \}$$

V(I) in \mathbb{R}^3 Image from [Cox, Little, O'Shea]

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \ldots, p_s(\mathbf{x}) : s$ "independant" constraints, *n* variables $\implies n - s$ degrees of freedom in V(I).

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \dots, p_s(\mathbf{x}) : s$ "independant" constraints, *n* variables $\implies n - s$ degrees of freedom in V(I). This is correct if p_1, \dots, p_s is a regular sequence.

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \dots, p_s(\mathbf{x}) : s$ "independant" constraints, *n* variables $\implies n - s$ degrees of freedom in V(I). This is correct if p_1, \dots, p_s is a regular sequence.

Figure 1: A curve has dimension 1

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ generating $I = \langle p_1, \dots, p_s \rangle$.

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ generating $I = \langle p_1, \dots, p_s \rangle$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ linear in x_1, \ldots, x_s .
- Linear change of variables A such that $\mathcal{P} = \mathcal{F} \circ A$.
- x_1, \ldots, x_s are "oil variables", x_{s+1}, \ldots, x_n "vinegar variables".

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ generating $I = \langle p_1, \dots, p_s \rangle$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ linear in x_1, \ldots, x_s .
- Linear change of variables A such that $\mathcal{P} = \mathcal{F} \circ A$.
- x_1, \ldots, x_s are "oil variables", x_{s+1}, \ldots, x_n "vinegar variables".

Private key (Geometric point of view) [Kipnis, Shamir 1998]

Linear subspace S of dimension s such that $S \subset V(I)$

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ generating $I = \langle p_1, \dots, p_s \rangle$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ linear in x_1, \ldots, x_s .
- Linear change of variables A such that $\mathcal{P} = \mathcal{F} \circ A$.
- x_1, \ldots, x_s are "oil variables", x_{s+1}, \ldots, x_n "vinegar variables".

Private key (Geometric point of view) [Kipnis, Shamir 1998]

Linear subspace S of dimension s such that $S \subset V(I)$

Observations

• First s columns of the secret matrix A^{-1} span S.

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ generating $I = \langle p_1, \dots, p_s \rangle$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^s$ linear in x_1, \ldots, x_s .
- Linear change of variables A such that $\mathcal{P} = \mathcal{F} \circ A$.
- x_1, \ldots, x_s are "oil variables", x_{s+1}, \ldots, x_n "vinegar variables".

Private key (Geometric point of view) [Kipnis, Shamir 1998]

Linear subspace S of dimension s such that $S \subset V(I)$

Observations

- First s columns of the secret matrix A^{-1} span S.
- V(I) is a complete intersection if $n \ge 2s$.

Objective: Find \mathcal{S} , the secret key.

1 What is special about S, compared to the rest of V(I) ?

2 What is special about V(I), compared to other varieties ?

${f 3}$ Can ${\cal S}$ be hidden with a perturbation or random equations?

Open questions and future/on-going work

Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{grad}} p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{grad}} p_s)^T \end{pmatrix}$$
 and assume $I = \langle p_1, \dots, p_s \rangle$ is radical.

Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{grad}}p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{grad}}p_s)^T \end{pmatrix}$$
 and assume $I = \langle p_1, \ldots, p_s \rangle$ is radical.

Definition

 $x \in V(I)$ is regular if $Jac_{\mathcal{P}}(x)$ is full rank.

Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{\mathsf{grad}}}p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{\mathsf{grad}}}p_s)^T \end{pmatrix}$$
 and assume

and assume $I = \langle p_1, \ldots, p_s \rangle$ is radical.

Definition

 $x \in V(I)$ is regular if $\operatorname{Jac}_{\mathcal{P}}(x)$ is full rank. The tangent space of V at $x \in V$ is

$$T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$$

Goal: Distinguish points of $V(I) \setminus S$ from points of S.

Geometric observation

A linear subspace is tangent to itself.

Goal: Distinguish points of $V(I) \setminus S$ from points of S.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{S}, \mathcal{S} \subset T_{\pmb{x}}V$

Goal: Distinguish points of $V(I) \setminus S$ from points of S.

Geometric observation

A linear subspace is tangent to itself. $\forall \boldsymbol{x} \in \mathcal{S}, \mathcal{S} \subset \mathcal{T}_{\boldsymbol{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in S$.

Goal: Distinguish points of $V(I) \setminus S$ from points of S.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{S}, \mathcal{S} \subset \mathcal{T}_{\pmb{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in S$.

Computational approach

• With $B \in \mathbb{F}_q^{(n-s) \times n}$ a basis of $T_x V$, restrict \mathcal{P} to $T_x V$: $\mathcal{P}_{|T_x V}(\mathbf{y}) = (\mathbf{y}^T B P_1 B^T \mathbf{y}, \dots, \mathbf{y}^T B P_s B^T \mathbf{y})$

Goal: Distinguish points of $V(I) \setminus S$ from points of S.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{S}, \mathcal{S} \subset \mathcal{T}_{\pmb{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in S$.

Computational approach

- With $B \in \mathbb{F}_q^{(n-s) \times n}$ a basis of $T_x V$, restrict \mathcal{P} to $T_x V$: $\mathcal{P}_{|T_x V}(\mathbf{y}) = (\mathbf{y}^T B P_1 B^T \mathbf{y}, \dots, \mathbf{y}^T B P_s B^T \mathbf{y})$
- Compute kernels of BP_iB^T , of large dimension if $x \in S$.

Main result: more than we bargained for

Given one vector $x \in S$ and \mathcal{P} , compute a basis of S in polynomial-time $O(sn^{\omega})$, $2 \leq \omega \leq 3$.

Main result: more than we bargained for

[P. 2024]

Given one vector $x \in S$ and \mathcal{P} , compute a basis of S in polynomial-time $O(sn^{\omega})$, $2 \le \omega \le 3$.

Security level	I	I		V
n, s	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

see also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]

Main result: more than we bargained for

[P. 2024]

Given one vector $x \in S$ and \mathcal{P} , compute a basis of S in polynomial-time $O(sn^{\omega})$, $2 \le \omega \le 3$.

Security level	I	I		V
n, s	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

In practice with **SageMath** on my laptop (2.80GHz, 8GB RAM).

Limit: locality of the UOV secret

With this, the points of $V(I) \setminus S$ give **no information** on S.

see also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]

Objective: Find \mathcal{S} , the secret key.

1 What is special about S, compared to the rest of V(I)?

2 What is special about V(I), compared to other varieties ?

\bigcirc Can S be hidden with a perturbation or random equations?

Open questions and future/on-going work

Singular points of V(I) to find S?

Singular points of V(I) to find S?

Singular points of V(I) to find S?

Singular points of V(I) to find S?

Definition

Let $I = \langle \mathcal{P} \rangle$ be a radical ideal of $\mathbb{K}[x_1, \ldots, x_n]$ of codimension s. $\mathbf{x} \in V(I) \setminus \{0\}$ is singular if $\operatorname{Jac}_{\mathcal{P}}(\mathbf{x})$ has rank less than s.

Algebraic private key[Kipnis, Patarin, Goubin, 1999]Private key \mathcal{F} : s quadratic polynomials linear in x_1, \ldots, x_s .

Algebraic private key[Kipnis, Patarin, Goubin, 1999]Private key \mathcal{F} : s quadratic polynomials linear in x_1, \ldots, x_s .

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape :

$$\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x}) = \begin{bmatrix} J_1 & J_2 \\ 1 \cdots s & s+1 \cdots s \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[x_{s+1}, \ldots, x_n]^{s \times s}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{s \times n-s}$.

Algebraic private key[Kipnis, Patarin, Goubin, 1999]Private key \mathcal{F} : s quadratic polynomials linear in x_1, \ldots, x_s .

Algebraic private key[Kipnis, Patarin, Goubin, 1999]Private key \mathcal{F} : s quadratic polynomials linear in x_1, \ldots, x_s .

Locality of the UOV secret, bis

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape:

$$\mathsf{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} J_1 & J_2 \\ 1 \cdots s & s+1 \cdots n \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[x_{s+1}, \dots, x_n]^{s \times s}$ and $J_2 \in \mathbb{F}_q[x_1, \dots, x_n]^{s \times n-s}$.

Locality of the UOV secret, bis

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape:

$$\operatorname{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} J_1 & J_2 \end{bmatrix}$$

 $1 \cdots s s + 1 \cdots n$

Where $J_1 \in \mathbb{F}_q[x_{s+1}, \dots, x_n]^{s \times s}$ and $J_2 \in \mathbb{F}_q[x_1, \dots, x_n]^{s \times n-s}$.

Intuition

Singular points \iff Rank defects in the Jacobian.

• If J_2 is generic, rank defects should be caused **only** by J_1

Locality of the UOV secret, bis

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape:

$$\operatorname{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} J_1 & J_2 \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[x_{s+1}, \dots, x_n]^{s \times s}$ and $J_2 \in \mathbb{F}_q[x_1, \dots, x_n]^{s \times n-s}$.

Intuition

Singular points \iff Rank defects in the Jacobian.

- If J_2 is generic, rank defects should be caused **only** by J_1
- In other words, if *F*(*x*) is generic among UOV secret keys, singularities should be caused only by *S*.

1

The right tool for the job

Generic varieties are smooth \rightarrow generic points of V(I) should be smooth for the same reason.

¹This formulation is due to [Safey el Din, Schost 2016].

The right tool for the job

Generic varieties are smooth \rightarrow generic points of V(I) should be smooth for the same reason.

Thom's weak transversality theorem (in characteristic 0)¹

Consider
$$\Phi : \begin{cases} \mathbb{F}^n \times \mathbb{F}^d \to \mathbb{F}^s \\ \mathbf{x}, \mathcal{P} \mapsto \mathcal{P}(\mathbf{x}) \end{cases}$$
 and $\mathcal{O} \neq \emptyset$ a Zariski open set.

If Φ is **non-singular** on $\mathcal{O} \times \mathbb{F}^d$,

¹This formulation is due to [Safey el Din, Schost 2016].

The right tool for the job

Generic varieties are smooth \rightarrow generic points of V(I) should be smooth for the same reason.

Thom's weak transversality theorem (in characteristic 0)¹

Consider
$$\Phi : \begin{cases} \mathbb{F}^n \times \mathbb{F}^d \to \mathbb{F}^s \\ \mathbf{x}, \mathcal{P} \mapsto \mathcal{P}(\mathbf{x}) \end{cases}$$
 and $\mathcal{O} \neq \emptyset$ a Zariski open set.

If Φ is **non-singular** on $\mathcal{O} \times \mathbb{F}^d$, then $\exists \mathcal{U} \neq \emptyset$ a Zariski open set

¹This formulation is due to [Safey el Din, Schost 2016].

The right tool for the job

Generic varieties are smooth \rightarrow generic points of V(I) should be smooth for the same reason.

Thom's weak transversality theorem (in characteristic 0)¹

Consider
$$\Phi : \begin{cases} \mathbb{F}^n \times \mathbb{F}^d \to \mathbb{F}^s \\ \mathbf{x}, \mathcal{P} \mapsto \mathcal{P}(\mathbf{x}) \end{cases}$$
 and $\mathcal{O} \neq \emptyset$ a Zariski open set.

If Φ is **non-singular** on $\mathcal{O} \times \mathbb{F}^d$, then $\exists \mathcal{U} \neq \emptyset$ a Zariski open set such that for all $\mathcal{P} \in \mathcal{U}$, $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x})$ is **non-singular** on \mathcal{O} .

¹This formulation is due to [Safey el Din, Schost 2016].

• Field of characteristic 0.

Our setting

•
$$\mathbb{F} = \mathbb{Q}$$
.

- Field of characteristic 0.
- Φ smooth on an open \mathcal{O} .

Our setting

•
$$\mathbb{F} = \mathbb{Q}$$
.

•
$$\mathcal{O} = \mathcal{S}^{c}$$
.

- Field of characteristic 0.
- Φ smooth on an open \mathcal{O} .

 $\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$ $\forall \theta \in \mathcal{U}, \Phi_\theta \text{ smooth on } \mathcal{O}.$

Our setting

•
$$\mathbb{F} = \mathbb{Q}$$
.

•
$$\mathcal{O} = \mathcal{S}^{c}$$
.

$$\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$$

$$\forall \theta \in \mathcal{U}, \ V(I_{\theta}) \text{ smooth on } \mathcal{O}.$$

- Field of characteristic 0.
- Φ smooth on an open \mathcal{O} .

 $\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$ $\forall \theta \in \mathcal{U}, \Phi_\theta \text{ smooth on } \mathcal{O}.$

Our setting

•
$$\mathbb{F} = \mathbb{Q}$$
.

•
$$\mathcal{O} = \mathcal{S}^c$$
.

$$\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$$

$$\forall \theta \in \mathcal{U}, \ V(I_{\theta}) \text{ smooth on } \mathcal{O}.$$

Difficulty: lifting to positive characteristic.

- Field of characteristic 0.
- Φ smooth on an open \mathcal{O} .
- $\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$ $\forall \theta \in \mathcal{U}, \Phi_\theta \text{ smooth on } \mathcal{O}.$

Our setting

•
$$\mathbb{F} = \mathbb{Q}$$
.

•
$$\mathcal{O} = \mathcal{S}^c$$
.

$$\implies \mathcal{U} \subset \mathbb{Q}^d, \text{ an open s.t.}$$

$$\forall \theta \in \mathcal{U}, \ V(I_{\theta}) \text{ smooth on } \mathcal{O}.$$

Difficulty: lifting to positive characteristic.

Generic smoothness of a singular variety	[P. 2025]
For a generic UOV variety, $Sing(V(I)) \subset S$ (in \mathbb{Q} and	$\mathbb{F}_{p}, p \gg 1$).

Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

The Gröbner bases we obtain are special: they contain linear polynomials defining \mathcal{S} .

Geometric interpretation

Even in small characteristic, $Sing(V(I)) \cap S$ is the component of highest dimension of Sing(V(I)).

Key recovery attack targeting singular points

Previous Gröbner basis attack does not threaten current UOV parameters, due to the small field sizes.

Key recovery attack targeting singular points

Previous Gröbner basis attack does not threaten current UOV parameters, due to the small field sizes.

A history of targeting special points in $\ensuremath{\mathcal{S}}$

• Oil and Vinegar: invariant subspaces of the public key are always in *S* [Kipnis, Shamir 1998]

Key recovery attack targeting singular points

Previous Gröbner basis attack does not threaten current UOV parameters, due to the small field sizes.

A history of targeting special points in $\ensuremath{\mathcal{S}}$

- Oil and Vinegar: invariant subspaces of the public key are always in *S* [Kipnis, Shamir 1998]
- Unbalanced Oil and Vinegar: invariant subspaces of the public key are more likely in S [Kipnis, Patarin, Goubin 1999]

Key recovery attack targeting singular points

Previous Gröbner basis attack does not threaten current UOV parameters, due to the small field sizes.

A history of targeting special points in $\ensuremath{\mathcal{S}}$

- Oil and Vinegar: invariant subspaces of the public key are always in *S* [Kipnis, Shamir 1998]
- Unbalanced Oil and Vinegar: invariant subspaces of the public key are more likely in S [Kipnis, Patarin, Goubin 1999]

Geometric interpretation of an old attack

[Kipnis-Shamir 1998] is a (hybrid) singular point computation. Support heuristic analysis by relying on Thom's theorem and by estimating $|\text{Sing}(V(I))|_{\mathbb{F}_q}$ with the Lang-Weil bound. Objective: Find \mathcal{S} , the secret key.

1 What is special about S, compared to the rest of V(I)?

2 What is special about V(I), compared to other varieties ?

3 Can S be hidden with a perturbation or random equations?

Open questions and future/on-going work

UOV $\hat{+}$ [Faugère, Macario-Rat, Patarin, Perret 2022] Start with a UOV secret key, replace $t \leq 8$ polynomials by random polynomials, and mix. $\mathcal{P} = \mathcal{R} \circ \mathcal{F} \circ A$ Idea: Tradeoff between signing time and key size. **UOV** $\hat{+}$ [Faugère, Macario-Rat, Patarin, Perret 2022] Start with a UOV secret key, replace $t \leq 8$ polynomials by random polynomials, and mix. $\mathcal{P} = \mathcal{R} \circ \mathcal{F} \circ A$ Idea: Tradeoff between signing time and key size.

When t increases, signing time increases. t = 0 is UOV.

UOV $\hat{+}$ [Faugère, Macario-Rat, Patarin, Perret 2022] Start with a UOV secret key, replace $t \leq 8$ polynomials by random polynomials, and mix. $\mathcal{P} = \mathcal{R} \circ \mathcal{F} \circ A$ Idea: Tradeoff between signing time and key size.

When t increases, signing time increases. t = 0 is UOV.

Security assumption

Let \mathcal{P} be a UOV $\hat{+}$ public key defining an ideal $I = \langle p_1, \ldots, p_s \rangle$. $S \not\subset V(I)$, therefore key attacks on UOV $\hat{+}$ must invert \mathcal{R} .

$$\mathcal{P} = \mathcal{R} \circ \mathcal{F} \circ \mathcal{A}$$

$$\mathcal{F} = (\underbrace{f_1, \dots, f_t}_{\mathsf{Random}}, \underbrace{f_{t+1}, \dots, f_s}_{\mathsf{UOV}})$$

$$\mathcal{P} = \mathcal{R} \circ \mathcal{F} \circ A \qquad \qquad \mathcal{F} = (\underbrace{f_1, \dots, f_t}_{\mathsf{Random}}, \underbrace{f_{t+1}, \dots, f_s}_{\mathsf{UOV}})$$

Geometric interpretation

V(I) is the intersection of a UOV variety with t generic quadrics.

$$J = \langle f_1, \dots, f_t \rangle$$
$$V(I) = \underbrace{V(J)}_{\text{Generic quadrics}} \cap \underbrace{V(\hat{i})}_{\text{UOV variety}}$$

Underlying UOV Jacobian Jacobian of \mathcal{F} when $\mathbf{x} \in \mathcal{S}$: $Jac_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} J_1 \\ 0 \\ J_2 \end{bmatrix} \begin{bmatrix} t+1 \\ \vdots \\ s \end{bmatrix}$

Observation

The singular locus of V(I) contains $(\operatorname{Sing} V(\hat{i})) \cap V(J)$.

Observation

The singular locus of V(I) contains $(\operatorname{Sing} V(\hat{i})) \cap V(J)$.

Dimension computation

 $\hat{+}$ reduces the dimension of the singular locus by at most **2***t*.
$\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

$\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

Singular points of V(I)

$\approx q^{3s-2t-n-1}$ singular points of V(I), and $\mathcal{P}(\mathbf{x}) = 0$.

 $\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

Singular points of V(I)

 $pprox q^{3s-2t-n-1}$ singular points of V(I), and $\mathcal{P}(\mathbf{x}) = 0$.

Expected cost: $O(q^{n-2s+2t}n^{\omega}) \rightarrow \text{This is Kipnis-Shamir [KPG'99]}$

 $\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

Singular points of V(I)

$$pprox q^{3s-2t-n-1}$$
 singular points of $V(I)$, and $\mathcal{P}(\mathbf{x}) = 0$.

Expected cost: $O(q^{n-2s+2t}n^{\omega}) \rightarrow \text{This is Kipnis-Shamir [KPG'99]}$

Singular points of $V(\hat{i})$

 $\approx q^{3s-t-n-1}$ singular points of $V(\hat{i})$.

 $\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

Singular points of V(I)

$$pprox q^{3s-2t-n-1}$$
 singular points of $V(I)$, and $\mathcal{P}(\mathbf{x}) = 0$.

Expected cost: $O(q^{n-2s+2t}n^{\omega}) \rightarrow \text{This is Kipnis-Shamir [KPG'99]}$

Singular points of $V(\hat{i})$

 $\approx q^{3s-t-n-1}$ singular points of $V(\hat{i})$.

Expected number of trials: $O(q^{n-2s+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$

 $\operatorname{Sing}(V(I)) \subset \operatorname{Sing}(V(\hat{\mathfrak{l}})) \subset \mathcal{S}$

Singular points of V(I)

$$pprox q^{3s-2t-n-1}$$
 singular points of $V(I)$, and $\mathcal{P}(\mathbf{x}) = 0$.

Expected cost: $O(q^{n-2s+2t}n^{\omega}) \rightarrow \text{This is Kipnis-Shamir [KPG'99]}$

Singular points of $V(\hat{i})$

 $\approx q^{3s-t-n-1}$ singular points of $V(\hat{i})$.

Expected number of trials: $O(q^{n-2s+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$

 \rightarrow Can we decide $\mathbf{x} \in S$ faster than $O(q^t n^{\omega})$?

Tangent spaces again

 $\mathbf{x} \in \mathcal{S} \implies \mathcal{S} \cap T_{\mathbf{x}} V$ large dimension

Tangent spaces again

 $\mathbf{x} \in \mathcal{S} \implies \mathcal{S} \cap T_{\mathbf{x}} V$ large dimension

Restricting to an easier UOV $\hat{+}$ instance

 $\mathcal{P}_{|T_xV}(\mathbf{x})$ is a UOV+ instance with *s* equations but n - s + 1 variables and an s - t dimensional UOV trapdoor.

Tangent spaces again

 $\mathbf{x} \in \mathcal{S} \implies \mathcal{S} \cap T_{\mathbf{x}} V$ large dimension

Restricting to an easier UOV $\hat{+}$ instance

 $\mathcal{P}_{|T_xV}(\mathbf{x})$ is a UOV+ instance with *s* equations but n - s + 1 variables and an s - t dimensional UOV trapdoor.

Distinguisher

 $x \in S \implies V(\mathcal{P}_{|T_xV}(x))$ has constant codimension. Solved in polynomial time.

Application: New attack on UOV $\hat{+}/VOX$

$x \in S$? in polynomial time[P. 2025]Decide $x \in S$? in $O(\binom{n-2s+2t-3}{4}^2 \binom{n-2s+2t+1}{2}).$

Application: New attack on UOV + /VOX

Application: New attack on UOV + /VOX

$$O(q^{n-2s+2t}n^{\omega})$$

² [Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

25/33

Practical results and bit complexity

Parameters	I		V
log ₂ gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 3: $x \in S$? with molve on UOV⁺.

Practical results and bit complexity

Parameters	I		V
\log_2 gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 3: $x \in S$? with msolve on UOV $\hat{+}$.

We add $\log_2(q) \times (n-2s+t)$ to obtain the full cost:

Parameters	I		V
Security level (log ₂ gates)	143	207	272
Kipnis-Shamir (log ₂ gates)	166	233	313
This work (log ₂ gates)	140	188	243

Figure 4: Full attack on UOV +.

- 1 What is special about S, compared to the rest of V(I)?
- 2 What is special about V(I), compared to other varieties ?
- 3 Can S be hidden with a perturbation or random equations?
- **4** Open questions and future/on-going work

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound³ [Debarre, Manivel 1998]

Let X be a generic complete intersection of s quadrics of rank n.

³The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound³ [Debarre, Manivel 1998]

Let X be a generic complete intersection of s quadrics of rank n.

 If δ(n, s, r) < 0, then X contains no (proj.) r-dimensional subspaces

³The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r+1)(n-r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound³ [Debarre, Manivel 1998]

Let X be a generic complete intersection of s quadrics of rank n.

- If δ(n, s, r) < 0, then X contains no (proj.) r-dimensional subspaces
- Otherwise, δ(n, s, r) is the dimension of the variety of linear spaces included in X.

³The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound³ [Debarre, Manivel 1998]

Let X be a generic complete intersection of s quadrics of rank n.

- If δ(n, s, r) < 0, then X contains no (proj.) r-dimensional subspaces
- Otherwise, δ(n, s, r) is the dimension of the variety of linear spaces included in X.

Application to UOV

If $\alpha = \frac{n}{s}$ is a constant, then a UOV secret is characterized by a constant number of polynomials from the public key. For practical parameters, 3 or 4 polynomials are enough.

³The original statement is for arbitrary degrees.

Two possible directions:

Solving underdetermined polynomial systems

Computing the largest subspace in generic complete intersections.

 \rightarrow improves forgery attacks against UOV.

Original key recovery attacks against UOV

Computing the smallest non-generic subspace in a UOV variety.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

• Compute a subspace S of dimension s - k such that $p_{1|S}, \ldots, p_{k|S} = 0$.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

- Compute a subspace S of dimension s k such that $p_{1|S}, \ldots, p_{k|S} = 0$.
- **b** Solve $\mathcal{P}_{|S}(\mathbf{x}) = 0$, a system of s k equations and variables.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension
$$s - k$$
 such that

$$p_{1|S},\ldots,p_{k|S}=0.$$

b Solve $\mathcal{P}_{|S}(\mathbf{x}) = 0$, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{5}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step a in prob. polynomial time for k = 2.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension
$$s - k$$
 such that

$$p_{1|S},\ldots,p_{k|S}=0.$$

b Solve $\mathcal{P}_{|S}(\mathbf{x}) = 0$, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{b}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step **a** in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically.

$$\frac{n}{s} = \frac{5}{2} \to k = 3.$$

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension
$$s - k$$
 such that

$$p_{1|S},\ldots,p_{k|S}=0.$$

b Solve $\mathcal{P}_{|S}(\mathbf{x}) = 0$, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{b}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step **a** in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically.

$$\frac{n}{s}=\frac{5}{2}\rightarrow k=3.$$

• Efficient algorithm for k = 3?

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension
$$s - k$$
 such that

$$p_{1|S},\ldots,p_{k|S}=0.$$

b Solve $\mathcal{P}_{|S}(\mathbf{x}) = 0$, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{b}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step **a** in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically.

$$\frac{n}{s} = \frac{5}{2} \to k = 3.$$

- Efficient algorithm for k = 3?
- Does step a become more expensive than step b?

• Tangent spaces reveal information only if $x \in S$.

- Tangent spaces reveal information only if $x \in S$.
- Singular points are expensive to compute.

- Tangent spaces reveal information only if $x \in S$.
- Singular points are expensive to compute.
- Singular points require $\frac{m}{2} + 1$ polynomials: does not achieve the bound.

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{S}\subset V(I)$, dim $\mathcal{S}=s$, $\delta(n-1,s-1,3)<0$

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{S}\subset V(I)$, dim $\mathcal{S}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{S}\subset V(I)$, dim $\mathcal{S}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

<u>Motivation</u>: the degree of these varieties is controlled, which yields efficient algorithms.

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{S}\subset V(I)$, dim $\mathcal{S}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

<u>Motivation</u>: the degree of these varieties is controlled, which yields efficient algorithms.

Challenge

How to choose Π so that it is easy to compute the polar variety when ${\mathcal S}$ is unknown?

 \to Easy to distinguish UOV from generic systems with polar varieties... when ${\cal S}$ is known.

Thank you for your attention!

One vector to full key recovery in polynomial time PQC '24

From **one vector** in \mathcal{S} , return a basis of \mathcal{S} in polynomial time.

Singular points of UOV and UOV $\hat{+}$

Eurocrypt '25

- V(I) has a large singular locus.
- Singular points of UOV $\hat{+}$ yield faster attacks.
- Key recovery from one vector for UOV $\hat{+}$ in polynomial time.

Future/On-going work

Find efficient algorithms to achieve the Debarre and Manivel bound.

- In the generic case, as a precomputation for solving systems.
- In the UOV case, as key recovery attacks.

Level	q, o, v, t	epk gain vs UOV
I	251, 48, 55, 6	36%
	1021, 70, 79, 7	44%
V	4093, 96, 107, 8	27%

The Quotient Ring transform

• Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.

The Quotient Ring transform

- Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.

The Quotient Ring transform

- Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.

The Quotient Ring transform

- Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

The Quotient Ring transform

- Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

VOX: QR-UOV $\hat{+}$

$$\mathsf{UOV}\hat{+}(q^\ell,m/\ell,n/\ell,m,t) \xrightarrow{\mathsf{QR}} \mathsf{UOV}\hat{+}(q,m,n,t).$$

The Quotient Ring transform

- Generate a $UOV(q^{\ell}, m, n)$ key with ℓs equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

VOX: QR-UOV $\hat{+}$

$$\mathsf{UOV}\hat{+}(q^\ell,m/\ell,n/\ell,m,t) \xrightarrow[\mathsf{QR}]{} \mathsf{UOV}\hat{+}(q,m,n,t).$$

MinRank attacks on the big field instance of VOX

- Initial parameters are not secure
 [Furue, Ikematsu 2023]
- Practical attack on all new parameters

[Guo, Ding 2024]

Practical attack on VOX

Dimension computation

 $UOV+(q^{\ell}, m/\ell, n/\ell, m, t)$ defines a variety that contains S_t but it should be the empty variety for a generic system.

Practical attack on VOX

Dimension computation

 $UOV + (q^{\ell}, m/\ell, n/\ell, m, t)$ defines a variety that contains S_t but it should be the empty variety for a generic system.

Subfield attack

[P. 2024b]

Practical key recovery attack on the big field instance and use of subfields $\mathbb{F}_{q^{\ell'}} \subset \mathbb{F}_{q^{\ell}}$ to attack a subset of new parameters.

Practical attack on VOX

Dimension computation

 $UOV + (q^{\ell}, m/\ell, n/\ell, m, t)$ defines a variety that contains S_t but it should be the empty variety for a generic system.

Subfield attack

P. 2024b]

Practical key recovery attack on the big field instance and use of subfields $\mathbb{F}_{q^{\ell'}} \subset \mathbb{F}_{q^{\ell}}$ to attack a subset of new parameters.

Parameters	I	lc		Illa	V	Vb
l	6	9	7	15	8	14
ℓ'	6	3	7	5	8	7
time	0.29s	2 ⁶⁷ gates ⁴	1.35s	56.7s	0.56s	6.11s

Figure 5: Timing for the subfield attack on QR-UOV $\hat{+}$ on my laptop.

⁴400 CPU-hours on a server in practice.