Key recovery from one vector in UOV schemes

Pierre Pébereau
Sorbonne Université, LIP6, CNRS, Thales SIX
\section*{THALES}

January 19, 2024

Post-Quantum Zoo

Scheme	Assumptions	Public key size (bytes)	Signature size (bytes)
EdDSA	Discrete log	32	64
Sphincs+ 128s	Hash-based	32	7856
Falcon 512	Structured lattices	897	666
Dilithium2	Structured lattices	1312	2420

Figure: Pre-quantum and NIST standard signatures

Source: PQShield (https://pqshield.github.io/nist-sigs-zoo/)

Post-Quantum Zoo

Scheme	Assumptions	Public key size (bytes)	Signature size (bytes)
EdDSA	Discrete log	32	64
Sphincs+ 128s	Hash-based	32	7856
Falcon 512	Structured lattices	897	666
Dilithium2	Structured lattices	1312	2420
uov-Ip	Multivariate	43576	128

Figure: Pre-quantum and NIST standard signatures

Source: PQShield (https://pqshield.github.io/nist-sigs-zoo/)

Post-Quantum Zoo

Figure: Signature and key sizes in the NIST competition versus standards (pink stars) and classical cryptography (blue dots) at security level I.

Source: PQShield (https://pqshield.github.io/nist-sigs-zoo/)

Post-Quantum Zoo

Figure: Signature and key sizes in the NIST competition versus standards (pink stars) and classical cryptography (blue dots) at security level I.

Source: PQShield (https://pqshield.github.io/nist-sigs-zoo/)

Multivariate Post-Quantum Zoo

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally [Kipnis, Patarin, Goubin, 1999]

- The legitimate signer solves a linear system to sign.

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD
- The receiver evaluates a quadratic map to verify a signature. EASY

Polynomial system solving crash course

Polynomial system

A collection of m polynomials in n variables: $P_{1}, \ldots, P_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$

Polynomial system solving crash course

Polynomial system

A collection of m polynomials in n variables: $P_{1}, \ldots, P_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$

Ideal

This system defines an ideal of the polynomial ring $\mathcal{R}=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$:

$$
I=\left\langle P_{1}, \ldots, P_{m}\right\rangle:=\left\{\sum_{i=1}^{m} a_{i} P_{i}, \quad\left(a_{i}\right) \in \mathcal{R}^{m}\right\}
$$

Polynomial system solving crash course

Polynomial system

A collection of m polynomials in n variables: $P_{1}, \ldots, P_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$

Ideal

This system defines an ideal of the polynomial ring $\mathcal{R}=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$:

$$
I=\left\langle P_{1}, \ldots, P_{m}\right\rangle:=\left\{\sum_{i=1}^{m} a_{i} P_{i}, \quad\left(a_{i}\right) \in \mathcal{R}^{m}\right\}
$$

Variety

The set of solutions of the system is called an algebraic variety

$$
V(I)=\left\{x \in \overline{\mathbb{F}}_{q}^{n}, \forall p \in I, p(x)=0\right\}
$$

Polynomial system solving crash course

Polynomial system

A collection of m polynomials in n variables: $P_{1}, \ldots, P_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$

Ideal

This system defines an ideal of the polynomial ring $\mathcal{R}=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$:

$$
I=\left\langle P_{1}, \ldots, P_{m}\right\rangle:=\left\{\sum_{i=1}^{m} a_{i} P_{i}, \quad\left(a_{i}\right) \in \mathcal{R}^{m}\right\}
$$

Variety

The set of solutions of the system is called an algebraic variety

$$
V(I)=\left\{x \in \overline{\mathbb{F}}_{q}^{n}, \forall p \in I, p(x)=0\right\}
$$

If the system is regular, then $V(I)$ has dimension $n-m$.

Polynomial system solving crash course

Multivariate Quadratic Problem

Find a solution $x \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

This problem is NP-hard (Equivalent to SAT in \mathbb{F}_{2}).

Polynomial system solving crash course

Multivariate Quadratic Problem

Find a solution $x \in \mathbb{F}_{q}^{n}$ to a system of m quadratic equations in n variables

$$
\mathcal{P}(x)=0 \in \mathbb{F}_{q}^{m}
$$

This problem is NP-hard (Equivalent to SAT in \mathbb{F}_{2}).

Complexity

Under regularity assumptions and for zero-dimensional systems, solved by performing linear algebra on Macaulay matrix in degree $d_{\text {reg }}$, the first non-positive index in the Hilbert series:

$$
H_{\mathcal{R} / I}(t)=\frac{\left(1-t^{2}\right)^{m}}{(1-t)^{n}} \rightarrow O\left(\binom{n+d_{\text {reg }}}{d_{\text {reg }}}^{\omega}\right)
$$

UOV: Original formulation

Unbalanced Oil and Vinegar

 [Kipnis, Patarin, Goubin, 1999]Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Secret key

Public key

Figure: $\operatorname{uov}(m=44, n=112)$ Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: triangular matrices $G=F \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)$

Figure: $\operatorname{uov}(m=44, n=112)$ Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: triangular matrices $G=F \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)$

Link with standard multivariate cryptography

Private key polynomials: m quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m} Public key polynomials: m quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables.

UOV: Original formulation

Unbalanced Oil and Vinegar

 [Kipnis, Patarin, Goubin, 1999]Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: triangular matrices $G=F \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)$

Link with standard multivariate cryptography

Private key polynomials: m quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m} Public key polynomials: m quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables. $x_{1}, \ldots, x_{m} \rightarrow$ oil variables $x_{m+1}, \ldots, x_{n} \rightarrow$ vinegar variables

UOV: Original formulation

Unbalanced Oil and Vinegar

 [Kipnis, Patarin, Goubin, 1999]Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: triangular matrices $G=F \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)$

Link with standard multivariate cryptography

Private key polynomials: m quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m} Public key polynomials: m quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables.
$x_{1}, \ldots, x_{m} \rightarrow$ oil variables
$x_{m+1}, \ldots, x_{n} \rightarrow$ vinegar variables
In practice: $\underbrace{2 m \leq}_{[K S 98]} n$

UOV: Original formulation

Unbalanced Oil and Vinegar

Private Key: - structured triangular matrices $F=\left(F_{1}, \ldots, F_{m}\right) \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}$ - $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ random change of variables

Public Key: triangular matrices $G=F \circ A=\left(A^{T} F_{1} A, \ldots, A^{T} F_{m} A\right)$

Link with standard multivariate cryptography

Private key polynomials: m quadratic forms $\boldsymbol{x}^{\top} F_{i} \boldsymbol{x}$ linear in x_{1}, \ldots, x_{m} Public key polynomials: m quadratic forms $\boldsymbol{x}^{\top} G_{i} \boldsymbol{x}$ in n variables.
$x_{1}, \ldots, x_{m} \rightarrow$ oil variables
$x_{m+1}, \ldots, x_{n} \rightarrow$ vinegar variables
In practice: $\underbrace{2 m \leq}_{[K S 98]} n \underbrace{\leq 3 m}_{\text {Key sizes }}$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

(A, F)

G

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}.

$$
\begin{gathered}
(A, F) \\
\boldsymbol{x}=\operatorname{Sign}(G(\boldsymbol{t}))
\end{gathered}
$$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}. Sample y_{m+1}, \ldots, y_{n} uniformly and solve a square linear system. Return $x=A^{-1} y$
(A, F)
$\boldsymbol{x}=\operatorname{Sign}(G(\boldsymbol{t}))$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}.

Sample y_{m+1}, \ldots, y_{n} uniformly and solve a square linear system. Return $x=A^{-1} y$

- Bob verifies: checks that for $1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}$.

$$
\begin{gathered}
(A, F) \\
\boldsymbol{x}=\operatorname{Sign}(G(\boldsymbol{t}))
\end{gathered}
$$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ such that

$$
1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}
$$

- Alice signs: \boldsymbol{y} solution of $G\left(A^{-1} y\right)=t$ linear in y_{1}, \ldots, y_{m}. Sample y_{m+1}, \ldots, y_{n} uniformly and solve a square linear system. Return $x=A^{-1} y$
- Bob verifies: checks that for $1 \leq i \leq m, G_{i}(\boldsymbol{x})=t_{i}$.

Hash-and-sign

In practice, $\boldsymbol{t}=\mathcal{H}(M), M \in\{0,1\}^{*}$

UOV: Parameters

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig + salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

 [Beullens 2020]Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{\top} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{\top} G_{m} \boldsymbol{y}=0
$$

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{\top} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{\top} G_{m} \boldsymbol{y}=0
$$

Observation 1

The first m columns of A^{-1} form a basis of \mathcal{O}.

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_{q}^{n}$ of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{m} \boldsymbol{y}=0
$$

Observation 1

The first m columns of A^{-1} form a basis of \mathcal{O}.

Observation 2

All vectors in \mathcal{O} are signatures of the message $(0, \ldots, 0) \in \mathbb{F}_{q}^{m}$, but the converse is false.

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$.

$$
V(\boldsymbol{t}):=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=t_{i}\right\}
$$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$.

$$
V(\boldsymbol{t}):=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=t_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-m$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$.

$$
V(\boldsymbol{t}):=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=t_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-m$

Key recovery

Goal: find an equivalent secret key to sign any message.

$$
\mathcal{O} \subset\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=0\right\}
$$

Cryptanalysis

Forgery

Goal: Find a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $\boldsymbol{t} \in \mathbb{F}_{q}^{m}$.

$$
V(\boldsymbol{t}):=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=t_{i}\right\}
$$

Computational problem: Find a point in a variety of dimension $n-m$

Key recovery

Goal: find an equivalent secret key to sign any message.

$$
\mathcal{O} \subset\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(x)=0\right\}
$$

Computational problem: Find a linear subspace of dimension m in $V(0)$

Contribution

> | Input | Output |
| :--- | :--- |
| $G, v \in \mathcal{O}>$ | $O\left(m n^{\omega}\right)$ |$\sum^{\sum \mathcal{O}}$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.

Contribution

> | Input | Output |
| :--- | :--- |
| $G, v \in \mathcal{O}>$ | $O\left(m n^{\omega}\right)$ |$\sum^{\sum \mathcal{O}}$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Contribution

$$
\begin{array}{cl}
\text { Input } & \text { Output } \\
G, v \in \mathcal{O}>O\left(m n^{\omega}\right) & \sum \mathcal{O}
\end{array}
$$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in \mathcal{O} to retrieve the secret key up to equivalence. This is enough to sign any message.

Contribution

$$
\begin{array}{cl}
\text { Input } & \text { Output } \\
G, v \in \mathcal{O}>O\left(m n^{\omega}\right) & \sum \mathcal{O}
\end{array}
$$

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O}.
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in \mathcal{O} to retrieve the secret key up to equivalence. This is enough to sign any message.
- Finding a vector of \mathcal{O} remains challenging.

Contribution: Implementation

n	112	160	184	244
Time	1.7 s	4.4 s	5.7 s	13.3 s

Figure: Implementation of our attack with native sagemath functions on a laptop

Contribution: Implementation

n	112	160	184	244
Time	1.7 s	4.4 s	5.7 s	13.3 s

Figure: Implementation of our attack with native sagemath functions on a laptop

In the context of side-channel attacks, Aulbach, Campos, Krämer, Samardjiska, Stöttinger ${ }^{1}$ previously obtained a similar result, with a practical key recovery from one vector.
${ }^{1}$ https://tches.iacr.org/index.php/TCHES/article/view/10962/10269

n	112	160	184	244
Time	19 m 34 s		3 h 7 m 55 s	11 h 41 m 7 s

Figure: Implementation in the context of side-channel attacks

State-of-the-art of Key Recovery Attacks

Reconciliation
 \square
 Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system.

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

This work

Any vector in \mathcal{O} characterizes it. \rightarrow Polynomial reconciliation

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]
Trapdoor: subspace \mathcal{O} of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{m} \boldsymbol{y}=0
$$

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{m} \boldsymbol{y}=0
$$

Reformulation

$$
\forall x \in \mathcal{O}, \quad \mathcal{O} \subset J(x):=\operatorname{ker}\left(x^{T} G_{1}\right) \cap \ldots \cap \operatorname{ker}\left(\boldsymbol{x}^{T} G_{m}\right)
$$

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension m such that

$$
\forall(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^{2}, \quad \boldsymbol{x}^{T} G_{1} \boldsymbol{y}=\cdots=\boldsymbol{x}^{T} G_{m} \boldsymbol{y}=0
$$

Reformulation

$$
\forall x \in \mathcal{O}, \quad \mathcal{O} \subset J(x):=\operatorname{ker}\left(x^{\top} G_{1}\right) \cap \ldots \cap \operatorname{ker}\left(x^{\top} G_{m}\right)
$$

Observation

$J(\boldsymbol{x})$ is of dimension $n-m$ generically.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$

Reduction

Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$
Reduction
Restriction $G_{\mid J(x)} \rightarrow$ UOV instance with smaller parameters.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(x))=n-m$

Reduction

Restriction $G_{J(x)} \rightarrow$ UOV instance with smaller parameters.

Contribution: The algorithm

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(x))=n-m$

Reduction

Restriction $G_{J_{(x)}} \rightarrow$ UOV instance with smaller parameters.

Concluding the attack

$n \leq 2 m \Longrightarrow G_{\mid J(x)}$ is singular \rightarrow broken in polynomial time.

Contribution: Complexity analysis

$$
J(\boldsymbol{x})=\operatorname{ker}\left(\begin{array}{c}
\boldsymbol{x}^{T} G_{1} \\
\vdots \\
\boldsymbol{x}^{T} G_{m}
\end{array}\right)
$$

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x})$ $O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$

Contribution: Complexity analysis

$$
J(\boldsymbol{x})=\operatorname{ker}\left(\begin{array}{c}
\boldsymbol{x}^{\top} G_{1} \\
\vdots \\
\boldsymbol{x}^{\top} G_{m}
\end{array}\right)
$$

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x})$
(2) Computing the restrictions: $G_{i \mid J(x)}=B^{T} G_{i} B$
$O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$
$O\left(m n^{\omega}\right)$

Contribution: Complexity analysis

$$
J(\boldsymbol{x})=\operatorname{ker}\left(\begin{array}{c}
\boldsymbol{x}^{T} G_{1} \\
\vdots \\
\boldsymbol{x}^{T} G_{m}
\end{array}\right)
$$

Public key: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m} \quad$ Secret vector: $\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \operatorname{dim}(J(\boldsymbol{x}))=n-m$

Complexity of the attack

(1) Computing B, a basis of $J(\boldsymbol{x})$
(2) Computing the restrictions: $G_{i \mid J(x)}=B^{T} G_{i} B$ $O\left(n^{\omega}\right)$ and $2 \leq \omega \leq 3$ $O\left(m n^{\omega}\right)$
(3) Kernel computations
(4) Total cost: $\boldsymbol{O}\left(\boldsymbol{m} \boldsymbol{n}^{\omega}\right)$

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}, n=\lceil 2.5 m\rceil$

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}, n=\lceil 2.5 m\rceil$

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}, n=\lceil 2.5 m\rceil$

m	9	10	11	12	13	14	15	16	17
Forgery	0.1 s	0.3 s	1 s	4 s	20 s	144 s	930 s	2 h	14 h
Recovery	40 s	1 h	2 h	$>11000 \mathrm{~h}$					

Figure: CPU-time in \mathbb{F}_{31} with msolve [Berthomieu, Eder, Safey el Din, 2021]

Gap between key recovery and forgery

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in\left(\mathbb{F}_{q}^{n \times n}\right)^{m}, n=\lceil 2.5 m\rceil$

m	9	10	11	12	13	14	15	16	17
Forgery	0.1 s	0.3 s	1 s	4 s	20 s	144 s	930 s	2 h	14 h
Recovery	40 s	1 h	2 h	$>11000 \mathrm{~h}$					

Figure: CPU-time in \mathbb{F}_{31} with msolve [Berthomieu, Eder, Safey el Din, 2021]

Key Recovery

This is the time it takes to retrieve one vector in \mathcal{O}.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{m}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{m}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$
Key recovery from forgery
Attempt to forge a signature \boldsymbol{x} for the message 0 until \boldsymbol{x} belongs to \mathcal{O}.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge a signature $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ for a single message $M \in \mathbb{F}_{q}^{m}$.

$$
V(M)=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{n} \quad \mid \quad \forall i \leq m, G_{i}(\boldsymbol{x})=M_{i}\right\}
$$

Reminder: $\mathcal{O} \subset V(O)$
Key recovery from forgery
Attempt to forge a signature \boldsymbol{x} for the message 0 until \boldsymbol{x} belongs to \mathcal{O}.

n	112	160	184	244
Time	0.2 s	0.5 s	0.7 s	1.5 s

Figure: Implementation of our test $\boldsymbol{x} \in \mathcal{O}$? on a laptop

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

Multivariate Post-Quantum Zoo

The UOV family

- "Multi-layer structure": Rainbow

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

Rainbow

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
[DY05, Beu22]
[Beu21]

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
- Structured keys: QR-UOV, VOX, SNOVA
[DY05, Beu22]
[Beu21]
[FIKT20, WTKC22]

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
[Beu21]
- Structured keys: QR-UOV, VOX, SNOVA [FIKT20, WTKC22]
- "Noisy" public key to increase security: $\mathrm{UOV}^{\hat{+}}, \mathrm{VOX}$
[CFFG+23]

Multivariate Post-Quantum Zoo

DME-Sign

Biscuit

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
[Beu21]
- Structured keys: QR-UOV, VOX, SNOVA [FIKT20, WTKC22]
- "Noisy" public key to increase security: UOV ${ }^{\hat{+}}, \mathrm{VOX} \quad[\mathrm{CFFG}+23]$
- Formal security proof: T-UOV, PrUOV [DGGH+23], [CFFG+23]

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Result already known on MAYO
[Beullens 2021]

More work required for schemes using modified UOV keys.

- $\mathrm{UOV}^{\hat{+}}$ (VOX/FOX)
- T-UOV

Perspectives

Contribution [P. 2023]

- One secret vector \rightarrow polynomial key recovery.
- Distinguish secret vectors from random signatures of 0 .

Perspectives

Contribution

- One secret vector \rightarrow polynomial key recovery.
- Distinguish secret vectors from random signatures of 0 .

New directions

- Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX

Perspectives

Contribution

- One secret vector \rightarrow polynomial key recovery.
- Distinguish secret vectors from random signatures of 0 .

New directions

- Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX
- Key recovery attacks targeting one vector

Perspectives

Contribution

- One secret vector \rightarrow polynomial key recovery.
- Distinguish secret vectors from random signatures of 0 .

New directions

- Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX
- Key recovery attacks targeting one vector

Links

https://eprint.iacr.org/2023/1131
https://github.com/pi-r2/OneVector

