Key recovery from one vector in UOV schemes

Pierre Pébereau

Sorbonne Université, LIP6, CNRS, Thales SIX

THALES

January 19, 2024

Scheme	Assumptions	Public key size (bytes)	Signature size (bytes)
EdDSA	Discrete log	32	64
Sphincs+ 128s	Hash-based	32	7856
Falcon 512	Structured lattices	897	666
Dilithium2	Structured lattices	1312	2420

Figure: Pre-quantum and NIST standard signatures

Scheme	Assumptions	Public key size (bytes)	Signature size (bytes)	
EdDSA	Discrete log	32	64	
Sphincs+ 128s	Hash-based	32	7856	
Falcon 512	Structured lattices	897	666	
Dilithium2	Structured lattices	1312	2420	
uov-Ip	Multivariate	43 576	128	

Figure: Pre-quantum and NIST standard signatures

Figure: Signature and key sizes in the NIST competition versus standards (pink stars) and classical cryptography (blue dots) at security level I.

Figure: Signature and key sizes in the NIST competition versus standards (pink stars) and classical cryptography (blue dots) at security level I.

Introduction Public Key Cryptography

Multivariate Post-Quantum Zoo

Introduction Public Key Cryptography

Multivariate Post-Quantum Zoo

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally

• The legitimate signer solves a linear system to sign.

EASY

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally [K

- The legitimate signer solves a linear system to sign.
- An adversary solves a quadratic system to forge a signature. HARD

EASY

UOV Signature Scheme

Unbalanced Oil and Vinegar, informally[Kipnis, Patarin, Goubin, 1999]• The legitimate signer solves a linear system to sign.EASY• An adversary solves a quadratic system to forge a signature.HARD• The receiver evaluates a quadratic map to verify a signature.EASY

Polynomial system solving crash course

Polynomial system

A collection of *m* polynomials in *n* variables: $P_1, \ldots, P_m \in \mathbb{F}_q[x_1, \ldots, x_n]$

Polynomial system solving crash course

Polynomial system

A collection of *m* polynomials in *n* variables: $P_1, \ldots, P_m \in \mathbb{F}_q[x_1, \ldots, x_n]$

Ideal

This system defines an ideal of the *polynomial ring* $\mathcal{R} = \mathbb{F}_q[x_1, \ldots, x_n]$:

$$I = \langle P_1, \ldots, P_m \rangle := \left\{ \sum_{i=1}^m a_i P_i, \quad (a_i) \in \mathcal{R}^m \right\}$$

Polynomial system solving crash course

Polynomial system

A collection of *m* polynomials in *n* variables: $P_1, \ldots, P_m \in \mathbb{F}_q[x_1, \ldots, x_n]$

Ideal

This system defines an ideal of the *polynomial ring* $\mathcal{R} = \mathbb{F}_q[x_1, \ldots, x_n]$:

$$I = \langle P_1, \ldots, P_m \rangle := \left\{ \sum_{i=1}^m a_i P_i, \quad (a_i) \in \mathcal{R}^m \right\}$$

Variety

The set of solutions of the system is called an *algebraic variety*

$$V(I) = \{x \in \overline{\mathbb{F}_q}^n, \forall p \in I, p(x) = 0\}$$

Polynomial system solving crash course

Polynomial system

A collection of *m* polynomials in *n* variables: $P_1, \ldots, P_m \in \mathbb{F}_q[x_1, \ldots, x_n]$

Ideal

This system defines an ideal of the *polynomial ring* $\mathcal{R} = \mathbb{F}_{a}[x_1, \ldots, x_n]$:

$$I = \langle P_1, \ldots, P_m \rangle := \left\{ \sum_{i=1}^m a_i P_i, \quad (a_i) \in \mathcal{R}^m \right\}$$

Varietv

The set of solutions of the system is called an *algebraic variety*

$$V(I) = \{x \in \overline{\mathbb{F}_q}^n, \forall p \in I, p(x) = 0\}$$

If the system is regular, then V(I) has dimension n - m.

Polynomial system solving crash course

Multivariate Quadratic Problem

Find **a** solution $x \in \mathbb{F}_{q}^{n}$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(x) = 0 \in \mathbb{F}_q^m$$

This problem is **NP-hard** (Equivalent to SAT in \mathbb{F}_2).

Polynomial system solving crash course

Multivariate Quadratic Problem

Find **a** solution $x \in \mathbb{F}_{q}^{n}$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(x) = 0 \in \mathbb{F}_q^m$$

This problem is **NP-hard** (Equivalent to SAT in \mathbb{F}_2).

Complexity

Under regularity assumptions and for zero-dimensional systems, solved by performing linear algebra on Macaulay matrix in degree d_{reg} , the first non-positive index in the Hilbert series:

$$H_{\mathcal{R}/I}(t) = rac{(1-t^2)^m}{(1-t)^n} o O\left(egin{pmatrix} n+d_{reg} \ d_{reg} \end{pmatrix}^{\omega}
ight)$$

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, \dots, F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables

Figure: uov(m = 44, n = 112) Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, ..., F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: triangular matrices $G = F \circ A = (A^T F_1 A, ..., A^T F_m A)$

Figure: uov(m = 44, n = 112) Key Pair in \mathbb{F}_{257}

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, ..., F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: triangular matrices $G = F \circ A = (A^T F_1 A, ..., A^T F_m A)$

Link with standard multivariate cryptography

Private key polynomials: *m* quadratic forms $\mathbf{x}^T F_i \mathbf{x}$ linear in x_1, \ldots, x_m Public key polynomials: *m* quadratic forms $\mathbf{x}^T G_i \mathbf{x}$ in *n* variables.

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, ..., F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: triangular matrices $G = F \circ A = (A^T F_1 A, ..., A^T F_m A)$

Link with standard multivariate cryptography

Private key polynomials: *m* quadratic forms $\mathbf{x}^T F_i \mathbf{x}$ linear in x_1, \ldots, x_m Public key polynomials: *m* quadratic forms $\mathbf{x}^T G_i \mathbf{x}$ in *n* variables. $x_1, \ldots, x_m \rightarrow$ oil variables $x_{m+1}, \ldots, x_n \rightarrow$ vinegar variables

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, ..., F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: triangular matrices $G = F \circ A = (A^T F_1 A, ..., A^T F_m A)$

Link with standard multivariate cryptography

```
Private key polynomials: m quadratic forms \mathbf{x}^T F_i \mathbf{x} linear in x_1, \ldots, x_m
Public key polynomials: m quadratic forms \mathbf{x}^T G_i \mathbf{x} in n variables.
x_1, \ldots, x_m \rightarrow oil variables
x_{m+1}, \ldots, x_n \rightarrow vinegar variables
In practice: 2m \leq n
[KS98]
```

UOV: Original formulation

Unbalanced Oil and Vinegar

[Kipnis, Patarin, Goubin, 1999]

Private Key: - structured triangular matrices $F = (F_1, ..., F_m) \in (\mathbb{F}_q^{n \times n})^m$ - $A \in GL_n(\mathbb{F}_q)$ random change of variables Public Key: triangular matrices $G = F \circ A = (A^T F_1 A, ..., A^T F_m A)$

Link with standard multivariate cryptography

```
Private key polynomials: m quadratic forms \mathbf{x}^T F_i \mathbf{x} linear in x_1, \ldots, x_m
Public key polynomials: m quadratic forms \mathbf{x}^T G_i \mathbf{x} in n variables.
x_1, \ldots, x_m \rightarrow oil variables
x_{m+1}, \ldots, x_n \rightarrow vinegar variables
In practice: \underbrace{2m \leq n \leq 3m}_{[KS98] Key sizes}
```

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_q^m$ is a vector $\boldsymbol{x} \in \mathbb{F}_q^n$ such that $1 \leq i \leq m, G_i(\mathbf{x}) = t_i$

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_{a}^{m}$ is a vector $\boldsymbol{x} \in \mathbb{F}_{a}^{n}$ such that $1 \leq i \leq m, G_i(\mathbf{x}) = t_i$

• Alice signs: y solution of $G(A^{-1}y) = t$ linear in y_1, \ldots, y_m .

UOV: Signing process

Signing

A signature for the message $\boldsymbol{t} \in \mathbb{F}_a^m$ is a vector $\boldsymbol{x} \in \mathbb{F}_a^n$ such that $1 \leq i \leq m, G_i(\mathbf{x}) = t_i$

• Alice signs: y solution of $G(A^{-1}y) = t$ linear in y_1, \ldots, y_m . Sample y_{m+1}, \ldots, y_n uniformly and solve a square linear system. Return $\mathbf{x} = A^{-1} \mathbf{v}$

UOV: Signing process

Signing

A signature for the message $t \in \mathbb{F}_{q}^{m}$ is a vector $x \in \mathbb{F}_{q}^{n}$ such that $1 \leq i \leq m, G_i(\mathbf{x}) = t_i$

- Alice signs: y solution of $G(A^{-1}y) = t$ linear in y_1, \ldots, y_m . Sample y_{m+1}, \ldots, y_n uniformly and solve a square linear system. Return $\mathbf{x} = A^{-1} \mathbf{y}$
- Bob verifies: checks that for $1 \le i \le m$, $G_i(\mathbf{x}) = t_i$.

UOV: Signing process

Signing

A signature for the message $t \in \mathbb{F}_{a}^{m}$ is a vector $x \in \mathbb{F}_{a}^{n}$ such that $1 \leq i \leq m, G_i(\mathbf{x}) = t_i$

- Alice signs: y solution of $G(A^{-1}y) = t$ linear in y_1, \ldots, y_m . Sample y_{m+1}, \ldots, y_n uniformly and solve a square linear system. Return $\mathbf{x} = A^{-1}v$
- Bob verifies: checks that for $1 \le i \le m$, $G_i(\mathbf{x}) = t_i$.

Hash-and-sign

In practice, $\boldsymbol{t} = \mathcal{H}(M), M \in \{0, 1\}^*$

UOV: Parameters

	NIST SL	n	m	\mathbb{F}_q	pk (bytes)	sk (bytes)	cpk (bytes)	$\substack{ sig+salt \\(\mathrm{bytes})}$
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

Figure: Modern UOV[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

Observation 1

The first *m* columns of A^{-1} form a basis of O.

UOV: Alternative formulation

Equivalent characterisation of the trapdoor

Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

Observation 1

The first *m* columns of A^{-1} form a basis of O.

Observation 2

All vectors in \mathcal{O} are signatures of the message $(0, \ldots, 0) \in \mathbb{F}_q^m$, but the converse is false.

Forgery

Goal: Find a signature $x \in \mathbb{F}_q^n$ for a single message $t \in \mathbb{F}_q^m$.

$$V(\boldsymbol{t}) := \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = t_i \}$$

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_{a}^{n}$ for a **single** message $\mathbf{t} \in \mathbb{F}_{a}^{m}$.

$$V(\boldsymbol{t}) := \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = t_i \}$$

Computational problem: Find a point in a variety of dimension n - m

Forgery

Goal: Find a signature $x \in \mathbb{F}_q^n$ for a single message $t \in \mathbb{F}_q^m$.

$$V(\boldsymbol{t}) := \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = t_i \}$$

Computational problem: Find a point in a variety of dimension n - m

Key recovery

Goal: find an equivalent secret key to sign **any** message.

$$\mathcal{O} \subset \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = 0 \}$$

Forgery

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_{a}^{n}$ for a **single** message $\mathbf{t} \in \mathbb{F}_{a}^{m}$.

$$V(\boldsymbol{t}) := \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = t_i \}$$

Computational problem: Find a point in a variety of dimension n - m

Key recovery

Goal: find an equivalent secret key to sign **any** message.

$$\mathcal{O} \subset \{ \boldsymbol{x} \in \mathbb{F}_{\boldsymbol{a}}^{\boldsymbol{n}} \mid \forall i \leq \boldsymbol{m}, G_{i}(\boldsymbol{x}) = 0 \}$$

Computational problem: Find a linear subspace of dimension m in V(0)

Contribution

Main result

• Polynomial-time algorithm that takes as input **one vector** in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
Contribution

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_q^n$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

P. 20<u>23</u>

Contribution

Main res<u>ult</u>

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

 An attacker needs to find a single vector in O to retrieve the secret **key** up to equivalence. This is enough to sign **any** message.

P. 2023

Contribution

Main result

- Polynomial-time algorithm that takes as input one vector in \mathcal{O} and the public key G, and returns a basis of \mathcal{O} .
- Polynomial-time algorithm that takes as input a vector $x \in \mathbb{F}_{q}^{n}$ and the public key G, and that answers the question " $x \in \mathcal{O}$?".

Consequence for the security of UOV

- An attacker needs to find a single vector in O to retrieve the secret **key** up to equivalence. This is enough to sign **any** message.
- Finding a vector of O remains challenging.

P. 2023

Result

Contribution: Implementation

n	112	160	184	244	
Time	1.7s	4.4s	5.7s	13.3s	

Figure: Implementation of our attack with native sagemath functions on a laptop

Result

Contribution: Implementation

n	112	160	184	244	
Time	1.7s	4.4s	5.7s	13.3s	

Figure: Implementation of our attack with native sagemath functions on a laptop

In the context of side-channel attacks, Aulbach, Campos, Krämer, Samardjiska, Stöttinger ¹ previously obtained a similar result, with a practical key recovery from one vector.

¹https://tches.iacr.org/index.php/TCHES/article/view/10962/10269

n	112	160	184	244
Time	19m34s		3h7m55s	11h41m7s

Figure: Implementation in the context of side-channel attacks

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system.

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21]

Key recovery attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system. \rightarrow Reconciliation

This work

Any vector in $\mathcal O$ characterizes it. \rightarrow Polynomial reconciliation

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension m such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension m such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

Reformulation

$$\forall \mathbf{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\mathbf{x}) := \ker(\mathbf{x}^T G_1) \cap ... \cap \ker(\mathbf{x}^T G_m)$$

Proof

Contribution: The algorithm

Equivalent characterisation of the trapdoor

[Beullens 2020]

Trapdoor: subspace \mathcal{O} of dimension m such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T G_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T G_m \boldsymbol{y} = 0$$

Reformulation

$$\forall \mathbf{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\mathbf{x}) := \ker(\mathbf{x}^T G_1) \cap ... \cap \ker(\mathbf{x}^T G_m)$$

Observation

 $J(\mathbf{x})$ is of dimension n - m generically.

Public key: $G \in (\mathbb{F}_q^{n \times n})^m$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - m$

Reduction

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - m$

Reduction

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\pmb{x} \in \mathbb{F}_q^n$ dim $(J(\pmb{x})) = n - m$

Reduction

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\pmb{x} \in \mathbb{F}_q^n$ dim $(J(\pmb{x})) = n - m$

Reduction

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\pmb{x} \in \mathbb{F}_q^n$ dim $(J(\pmb{x})) = n - m$

Reduction

Contribution: Complexity analysis

$$J(\boldsymbol{x}) = \ker \begin{pmatrix} \boldsymbol{x}^T G_1 \\ \vdots \\ \boldsymbol{x}^T G_m \end{pmatrix}$$

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - m$

Complexity of the attack

1 Computing B, a basis of $J(\mathbf{x})$

 $\mathit{O}(\mathit{n}^{\omega})$ and $2 \leq \omega \leq 3$

Contribution: Complexity analysis

$$J(\boldsymbol{x}) = \ker \begin{pmatrix} \boldsymbol{x}^T G_1 \\ \vdots \\ \boldsymbol{x}^T G_m \end{pmatrix}$$

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - m$

Complexity of the attack

- 1 Computing B, a basis of $J(\mathbf{x})$
- **2** Computing the restrictions: $G_{i|J(\mathbf{x})} = B^T G_i B$

 $O(n^{\omega})$ and $2 \leq \omega \leq 3$

 $O(mn^{\omega})$

Contribution: Complexity analysis

$$J(\boldsymbol{x}) = \ker \begin{pmatrix} \boldsymbol{x}^T G_1 \\ \vdots \\ \boldsymbol{x}^T G_m \end{pmatrix}$$

Public key: $G \in (\mathbb{F}_q^{n imes n})^m$ Secret vector: $\mathbf{x} \in \mathbb{F}_q^n$ dim $(J(\mathbf{x})) = n - m$

Complexity of the attack

Computing B, a basis of J(x)
 Computing the restrictions: G_{i|J(x)} = B^TG_iB
 Kernel computations
 O(mn^ω)
 Total cost: O(mn^ω)

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in (\mathbb{F}_q^{n \times n})^m, n = \lceil 2.5m \rceil$

Key recovery versus forgery

- Experimentally, observe large gap between forgery attacks and key recovery attacks.
- Key size: $G \in (\mathbb{F}_q^{n \times n})^m, n = \lceil 2.5m \rceil$

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

• Key size:
$$G \in (\mathbb{F}_q^{n imes n})^m, n = \lceil 2.5m \rceil$$

m	9	10	11	12	13	14	15	16	17
Forgery	0.1s	0.3s	1s	4s	20s	144s	930s	2h	14h
Recovery	40s	1h	2h	>11000h					

Figure: CPU-time in \mathbb{F}_{31} with **msolve** [Berthomieu, Eder, Safey el Din, 2021]

Key recovery versus forgery

• Experimentally, observe large gap between forgery attacks and key recovery attacks.

• Key size:
$$G \in (\mathbb{F}_q^{n imes n})^m, n = \lceil 2.5m \rceil$$

m	9	10	11	12	13	14	15	16	17
Forgery	0.1s	0.3s	1s	4s	20s	144s	930s	2h	14h
Recovery	40s	1h	2h	>11000h					

Figure: CPU-time in \mathbb{F}_{31} with **msolve** [Berthomieu, Eder, Safey el Din, 2021]

Key Recovery

This is the time it takes to retrieve **one** vector in \mathcal{O} .

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_{q}^{n}$ for a **single** message $M \in \mathbb{F}_{q}^{m}$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_{q}^{n} \mid \forall i \leq m, G_{i}(\boldsymbol{x}) = M_{i} \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^m$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = M_i \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Key recovery from forgery

Attempt to forge a signature x for the message 0 until x belongs to O.

Forgery attacks are key-recovery attacks

Forgery

Goal: forge **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $M \in \mathbb{F}_q^m$.

$$V(M) = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \forall i \leq m, G_i(\boldsymbol{x}) = M_i \}$$

Reminder: $\mathcal{O} \subset V(\mathcal{O})$

Key recovery from forgery

Attempt to forge a signature x for the message 0 until x belongs to O.

n	112	160	184	244
Time	0.2s	0.5s	0.7s	1.5s

Figure: Implementation of our test $x \in \mathcal{O}$? on a laptop

Multivariate Post-Quantum Zoo

Multivariate Post-Quantum Zoo

The UOV family

• "Multi-layer structure": Rainbow

[DY05, Beu22]

Pierre Pébereau

One vector to rule them all

January 2024

Multivariate Post-Quantum Zoo

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.

[DY05, Beu22] [Beu21]

Multivariate Post-Quantum Zoo

The UOV family

- "Multi-layer structure": Rainbow
- MAYO: key size/signature size trade-off.
- Structured keys: QR-UOV, VOX, SNOVA

[DY05, Beu22] [Beu21] [FIKT20, WTKC22]

Multivariate Post-Quantum Zoo

The UOV family

"Multi-layer structure": Rainbow [DY05, Beu22]
MAYO: key size/signature size trade-off. [Beu21]
Structured keys: QR-UOV, VOX, SNOVA [FIKT20, WTKC22]
"Noisy" public key to increase security: UOV[↑], VOX [CFFG+23]

Multivariate Post-Quantum Zoo

The UOV family

• "Multi-layer structure": Rainbow	[DY05, Beu22]
• MAYO: key size/signature size trade-off.	[Beu21]
• Structured keys: QR-UOV, VOX, SNOVA	[FIKT20, WTKC22]
• "Noisy" public key to increase security: $UOV^{\hat{+}}$,	VOX [CFFG+23]
• Formal security proof: T-UOV, PrUOV [D	GGH+23], [CFFG+23]

Pierre Pébereau

One vector to rule them all

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Result already known on MAYO

[Beullens 2021]

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrUOV

Result already known on MAYO

[Beullens 2021]

More work required for schemes using modified UOV keys.

- UOV⁺ (VOX/FOX)
- T-UOV
Contribution

- One secret vector → polynomial key recovery.
- Distinguish secret vectors from random signatures of 0.

Contribution

- One secret vector → polynomial key recovery.
- Distinguish secret vectors from random signatures of 0.

New directions

• Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX

Contribution

- One secret vector → polynomial key recovery.
- Distinguish secret vectors from random signatures of 0.

New directions

- Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX
- Key recovery attacks targeting one vector

Contribution

- One secret vector → polynomial key recovery.
- Distinguish secret vectors from random signatures of 0.

New directions

- Efficiently generalize tools to UOV-inspired schemes: T-UOV, VOX
- Key recovery attacks targeting one vector

Links

https://eprint.iacr.org/2023/1131 https://github.com/pi-r2/OneVector