Cryptanalysis of multivariate signatures from a geometric point of view

Can you find a large linear subspace in an algebraic set?

Pierre Pébereau Sorbonne Université, LIP6, CNRS, Thales SIX

> Séminaire Cryptographie de l'ANSSI May 28th, 2025

Context: Post Quantum Cryptography

"Quantum-hard" problems for cryptography

- Finding short vectors in Euclidean lattices.
- Decoding error-correcting codes.
- Computing isogenies between elliptic curves.
- Solving systems of polynomial equations.

Context: Post Quantum Cryptography

"Quantum-hard" problems for cryptography

- Finding short vectors in Euclidean lattices.
- Decoding error-correcting codes.
- Computing isogenies between elliptic curves.
- Solving systems of polynomial equations.

NIST PQC Standardisation: Additional signatures

- Round 1: 11/40 schemes based on polynomial systems
- Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main features: short signatures and fast algorithms.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

• Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.
- Forge: signing without S requires $> 2^{\lambda}$ "elementary operations".

Security level ¹		- 111	V
λ	143	207	272

¹also referred to/defined with $\ell \in \{128, 192, 256\}$: "at least as hard to break as AES- ℓ ".

What is a signature scheme?

The signer picks λ and creates a pair public key \mathcal{P} , private key \mathcal{S} .

- Sign a message μ : sign $(\mathcal{S}, \mu) \to \sigma$.
- Verify a signature: verify $(\mathcal{P}, \sigma, \mu) = \text{True}/\text{False}$.
- Forge: signing without S requires $> 2^{\lambda}$ "elementary operations".

Security level ¹		- 111	V
λ	143	207	272

Applications

SSH, TLS, Software signing, ...

¹also referred to/defined with $\ell \in \{128, 192, 256\}$: "at least as hard to break as AES- ℓ ".

Using multivariate polynomial systems to build cryptography.

Using multivariate polynomial systems to build cryptography.

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x}))$

Using multivariate polynomial systems to build cryptography.

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x}))$ Secret key: a way to find preimages $\mathbf{x} \in \mathbb{F}_q^n$ such that: $\mathcal{P}(\mathbf{x}) = \mathcal{H}(message)$

Using multivariate polynomial systems to build cryptography.

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x}))$ Secret key: a way to find preimages $\mathbf{x} \in \mathbb{F}_q^n$ such that: $\mathcal{P}(\mathbf{x}) = \mathcal{H}(message)$

Algebraic cryptanalysis

Solving polynomial systems to attack cryptography.

Using multivariate polynomial systems to build cryptography.

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x}))$ Secret key: a way to find preimages $\mathbf{x} \in \mathbb{F}_q^n$ such that: $\mathcal{P}(\mathbf{x}) = \mathcal{H}(message)$

Algebraic cryptanalysis

Solving polynomial systems to attack cryptography.

• Using algorithms such as F4, F5, XL, SAT solvers, ...

Using multivariate polynomial systems to build cryptography.

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$: $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) = (p_1(\mathbf{x}), \dots, p_m(\mathbf{x}))$ Secret key: a way to find preimages $\mathbf{x} \in \mathbb{F}_q^n$ such that: $\mathcal{P}(\mathbf{x}) = \mathcal{H}(message)$

Algebraic cryptanalysis

Solving polynomial systems to attack cryptography.

- Using algorithms such as F4, F5, XL, SAT solvers, ...
- Targeting many families: symmetric, lattices, codes, multivariate, ...

Crash course on polynomial systems

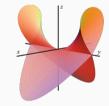
Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $I = \langle p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) \rangle$ $I := \{\sum_{i=1}^s a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_q[\mathbf{x}]^s\}$

$$I = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

Crash course on polynomial systems

Algebra


The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $I = \langle p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) \rangle$ $I := \{\sum_{i=1}^s a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_q[\mathbf{x}]^s\}$

$$I = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

Geometry

This ideal defines a variety

$$V(I) = \{ oldsymbol{x} \in \overline{\mathbb{F}}_q^n, orall p \in I, p(oldsymbol{x}) = 0 \}$$

V(I) in \mathbb{R}^3 Image from [Cox, Little, O'Shea]

A key geometric property: dimension

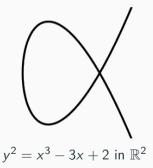
Intuition² of dimension from physics

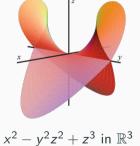
 $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x}) : m$ "independent" constraints, *n* variables $\implies n - m$ degrees of freedom in V(I).

²This is correct if p_1, \ldots, p_m is a regular sequence.

A key geometric property: dimension

Intuition² of dimension from physics


 $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x}) : m$ "independent" constraints, *n* variables $\implies n - m$ degrees of freedom in V(I).


²This is correct if p_1, \ldots, p_m is a regular sequence.

A key geometric property: dimension

Intuition² of dimension from physics

 $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x}) : m$ "independent" constraints, *n* variables $\implies n - m$ degrees of freedom in V(I).

Figure 1: A curve has dimension 1

Figure 2: A hypersurface has dimension n-1

²This is correct if p_1, \ldots, p_m is a regular sequence.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ generating $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, with n > 2m.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\pmb{x}):\mathbb{F}_q^n\mapsto \mathbb{F}_q^m$$
 generating $\mathcal{I}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\boldsymbol{x}):\mathbb{F}_q^n\mapsto\mathbb{F}_q^m$$
 generating $\mathcal{I}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$$
 generating $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, with $n > 2m$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

Observations

• First *o* columns of the secret matrix A^{-1} span \mathcal{O} .

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(m{x}):\mathbb{F}_q^n\mapsto\mathbb{F}_q^m$$
 generating $m{\mathcal{I}}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

- [Patarin 1997]
- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

Observations

- First *o* columns of the secret matrix A^{-1} span \mathcal{O} .
- In UOV, o = m, but not always the case in variants.

Representing UOV keys

UOV keys are quadratic forms

$$\mathcal{F}(\mathbf{x}) = \mathbf{x}^T F_1 \mathbf{x}, \dots, \mathbf{x}^T F_m \mathbf{x} \qquad \mathcal{P}(\mathbf{x}) = \mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}$$
$$\forall 1 \le i \le m, P_i = A^T F_i A$$

 $F_1 \in (\mathbb{F}_{257})^{n imes n}$

Figure 3: UOV polynomial pair in \mathbb{F}_{257}

Representing UOV keys

UOV keys are quadratic forms

$$\mathcal{F}(\mathbf{x}) = \mathbf{x}^T F_1 \mathbf{x}, \dots, \mathbf{x}^T F_m \mathbf{x} \qquad \mathcal{P}(\mathbf{x}) = \mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}$$
$$\forall 1 \le i \le m, P_i = A^T F_i A$$

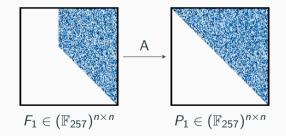


Figure 3: UOV polynomial pair in \mathbb{F}_{257}

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

Signing with the secret key

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

Signing with the secret key

• Draw $x_{o+1}, \ldots, x_n \leftarrow_{\$} \mathbb{F}_q$.

• Draw
$$y_{m+1}, \ldots, y_n \leftarrow_{\$} \mathbb{F}_q$$
.

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

Signing with the secret key

- Draw $x_{o+1}, \ldots, x_n \leftarrow_{\$} \mathbb{F}_q$.
- Solve a linear system $\mathcal{P}(A^{-1}x) = t$.

- Draw $y_{m+1}, \ldots, y_n \leftarrow_{\$} \mathbb{F}_q$.
- Solve a quadratic system $\mathcal{P}(\mathbf{y}) = \mathbf{t}$.

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

Signing with the secret key

- Draw $x_{o+1}, \ldots, x_n \leftarrow_{\$} \mathbb{F}_q$.
- Solve a linear system $\mathcal{P}(A^{-1}x) = t$.
- Return $\mathbf{y} = A^{-1}\mathbf{x}$.

- Draw $y_{m+1}, \ldots, y_n \leftarrow \mathbb{F}_q$.
- Solve a quadratic system $\mathcal{P}(\mathbf{y}) = \mathbf{t}$.
- Return y.

 $\mathcal{P}(\mathbf{A}^{-1}\mathbf{x})$ is linear in the oil variables and quadratic in the vinegar variables.

Signing with the secret key

- Draw $x_{o+1}, \ldots, x_n \leftarrow_{\$} \mathbb{F}_q$.
- Solve a linear system $\mathcal{P}(A^{-1}x) = t$.
- Return $y = A^{-1}x$.

Forging without the secret key

- Draw $y_{m+1}, \ldots, y_n \leftarrow \mathbb{F}_q$.
- Solve a quadratic system $\mathcal{P}(\mathbf{y}) = \mathbf{t}$.
- Return **y**.

 $O(n^{\omega}), \quad 2 \leq \omega < 3$

$$O(q^m)$$

Objective: Find \mathcal{O} , the secret key.

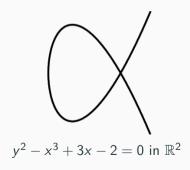
1 What is special about \mathcal{O} , compared to the rest of V(I)?

2 What is special about V(I), compared to other varieties ?

 ${f S}$ Can ${\cal O}$ be hidden with a perturbation or random equations?

4 Can you compress by embedding your key in a field extension?

Tangent space


Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{grad}}p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{grad}}p_m)^T \end{pmatrix}$$
 and assume $I = \langle p_1, \dots, p_m \rangle$ is radical.

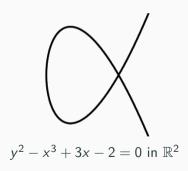
Tangent space

Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{grad}}p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{grad}}p_m)^T \end{pmatrix}$$
 and assume $I = \langle p_1, \dots, p_m \rangle$ is radical.

Definition

 $x \in V(I)$ is regular if $Jac_{\mathcal{P}}(x)$ is full rank.

Tangent space


Let
$$\operatorname{Jac}_{\mathcal{P}} := \begin{pmatrix} (\overrightarrow{\operatorname{grad}}p_1)^T \\ \vdots \\ (\overrightarrow{\operatorname{grad}}p_m)^T \end{pmatrix}$$
 and assume $I = \langle p_1, \dots, p_m \rangle$ is radical.

Definition

 $x \in V(I)$ is regular if $Jac_{\mathcal{P}}(x)$ is full rank.

The tangent space of V at $x \in V$ is

 $T_{\boldsymbol{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x}))$

Goal: Distinguish points of $V(I) \setminus \mathcal{O}$ from points of \mathcal{O} .

Geometric observation

A linear subspace is tangent to itself.

Goal: Distinguish points of $V(I) \setminus O$ from points of O.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{O}, \mathcal{O} \subset T_{\pmb{x}}V$

Goal: Distinguish points of $V(I) \setminus O$ from points of O.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{O}, \mathcal{O} \subset \mathcal{T}_{\pmb{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in \mathcal{O}$.

Goal: Distinguish points of $V(I) \setminus O$ from points of O.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{O}, \mathcal{O} \subset T_{\pmb{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in \mathcal{O}$.

Computational approach

• With
$$B \in \mathbb{F}_q^{(n-s) \times n}$$
 a basis of $T_x V$, restrict \mathcal{P} to $T_x V$:
 $\mathcal{P}_{|T_x V}(\mathbf{y}) = (\mathbf{y}^T B P_1 B^T \mathbf{y}, \dots, \mathbf{y}^T B P_m B^T \mathbf{y})$

Goal: Distinguish points of $V(I) \setminus O$ from points of O.

Geometric observation

A linear subspace is tangent to itself. $\forall \pmb{x} \in \mathcal{O}, \mathcal{O} \subset T_{\pmb{x}} V$

Algorithm

Given $x \in V$, compute $T_x V$ and the matrices of \mathcal{P} restricted to $T_x V$. These matrices have low rank if $x \in \mathcal{O}$.

Computational approach

- With $B \in \mathbb{F}_q^{(n-s) \times n}$ a basis of $T_x V$, restrict \mathcal{P} to $T_x V$: $\mathcal{P}_{|T_x V}(\mathbf{y}) = (\mathbf{y}^T B P_1 B^T \mathbf{y}, \dots, \mathbf{y}^T B P_m B^T \mathbf{y})$
- Compute kernels of BP_iB^T , of large dimension only if $x \in \mathcal{O}$.

Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector $x \in \mathcal{O}$ and \mathcal{P} , compute a basis of \mathcal{O} in polynomial-time $O(mn^{\omega})$, where $2 \leq \omega \leq 3$ is the exponent of matrix multiplication.

Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector $x \in \mathcal{O}$ and \mathcal{P} , compute a basis of \mathcal{O} in polynomial-time $O(mn^{\omega})$, where $2 \leq \omega \leq 3$ is the exponent of matrix multiplication.

Security level	I	I		V
<i>n</i> , <i>m</i>	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

In practice with SageMath on my laptop (2.80GHz, 8GB RAM).

see also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]

Consequence: One vector to rule them all

Main result: more than we bargained for

Given one vector $x \in \mathcal{O}$ and \mathcal{P} , compute a basis of \mathcal{O} in polynomial-time $O(mn^{\omega})$, where $2 \leq \omega \leq 3$ is the exponent of matrix multiplication.

Security level	I	I		V
<i>n</i> , <i>m</i>	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

In practice with **SageMath** on my laptop (2.80GHz, 8GB RAM).

Limit: locality of the UOV secret

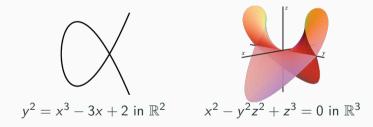
With this, the points of $V(I) \setminus O$ give **no information** on O.

see also: [Aulbach, Campos, Krämer, Samardjiska, Stöttinger 2023]

Objective: Find \mathcal{O} , the secret key.

1 What is special about \mathcal{O} , compared to the rest of V(I)?

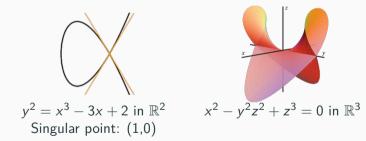
2 What is special about V(I), compared to other varieties ?


 ${f S}$ Can ${\cal O}$ be hidden with a perturbation or random equations?

4 Can you compress by embedding your key in a field extension?

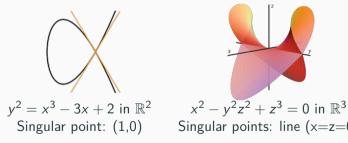
Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension *m*.

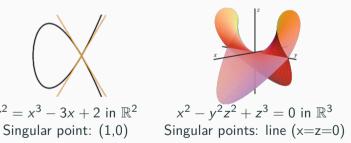
Definition (Tangent space at a regular point)


The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a regular point)

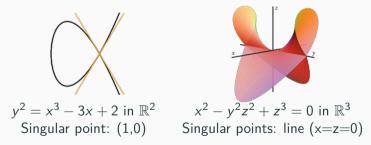

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$



Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a regular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_{r}(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$



Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension m.

Definition (Tangent space at a regular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Definition (Singular points)

 $x \in V(\mathcal{I}) \setminus \{0\}$ is singular if $\operatorname{Jac}_{\mathcal{P}}(x)$ has rank less than m.

Algebraic private key

[Kipnis, Patarin, Goubin, 1999]

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o .

Algebraic private key

[Kipnis, Patarin, Goubin, 1999]

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o .

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape :

$$\mathsf{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} J_1 & J_2 \\ 1 \cdots n & n \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[x_{o+1}, \ldots, x_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{m \times n - o}$.

Algebraic private key

Private key \mathcal{F} : *m* guadratic polynomials linear in x_1, \ldots, x_n . Secret Jacobian The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape when $\mathbf{x} \in \mathcal{O}$: $\operatorname{Jac}_{\mathcal{F}}(\mathbf{x}) = 0$ J_2 $1 \cdots 0 + 1 \cdots n$ Where $J_1 \in \mathbb{F}_q[x_{o+1}, \ldots, x_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{m \times n - o}$.

[Kipnis, Patarin, Goubin, 1999]

Algebraic private key

Private key \mathcal{F} : *m* guadratic polynomials linear in x_1, \ldots, x_n . Secret Jacobian The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape when $\mathbf{x} \in \mathcal{O}$: $\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x}) = 0$ J_2 $1 \cdots 0 + 1 \cdots n$ Where $J_1 \in \mathbb{F}_q[x_{o+1}, \ldots, x_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{m \times n - o}$. Dimension of the singular locus of V(I)

 $\dim \operatorname{Sing}(V(I)) \geq 2\dim(\mathcal{O}) + m - n - 1$

[Kipnis, Patarin, Goubin, 1999]

Generic smoothness of a singular variety

For a generic UOV variety, $\operatorname{Sing}(V(I)) \subset \mathcal{O}$ (in \mathbb{Q} and $\mathbb{F}_p, p \gg 1$).

In other words, the singular points we have counted are expected to be the only ones.

Generic smoothness of a singular variety

For a generic UOV variety, $\operatorname{Sing}(V(I)) \subset \mathcal{O}$ (in \mathbb{Q} and $\mathbb{F}_p, p \gg 1$).

In other words, the singular points we have counted are expected to be the only ones.

Polynomial system solving

Compute singular points by solving a polynomial system using a Gröbner basis: an equivalent polynomial system that is easy to solve, but hard to find.

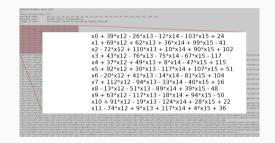
Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

meduced croebner bacts	A data
field characteristic:	
	253 29, p1, y2, p3, p4, y5, m6, x1, x2, x3, x4, x5, x6, x7, x6, x6, x10, x11, x13, x14, x15
	33*3+368**3+3*9*313*5+3#8;
	13-19-17 (1997) 4-19-17 (1-5) (1997) 4-5, 21-12/17-12/17-12/19/13/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14-19/14
	21 (a/2) 78 (a/2 (a/2) 78) (a/2) (a/

	3351636996763335163899676335161389967633871638996763387668997763387163899776338767388768387163899878387663876763878767388987876838766837768
	31 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1
	3120124409301233124310131231143101313111114141111013111114141141011111111
	1179/11779/11179/11179/1100/97100019710001010000000000
	x15+1+18+y6+1+111+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+
	312 1 20 m / p 1 / x 1 2 m / p 1 / 3 1 4 - 5 1 m / p 1 / 3 1 4 / 5 1 2 m / p 1 / 3 1 4 / 5 1 3 m / p 1 / 5 1 4 / 5 1 3 m / p 1 / 5 1 4 / 5 1 2 m / p 1 / 5 1 4 / 5 1 3 m / p 1 / 5 1
	10/2 1 4 2 4 4 2 4 10 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
	5+121944-14135-1250495+1415+125140495+1415+12153400+1415+1215+1415+1248496+1415+1415+1415+1415+1415+1415+1415+141
*A35*1+85*35*1*A35*3+1	214×231×1×111×1131×11×1×1×1×1×1×1×1×1×1×1×1

Gröbner basis of SingV(I)


metaced crosbner bar	
Reduced Groebner Lag	is data
Efleld characteristic	151
Everiable orders Engenietat anders	yd, p1, y2, 55, p4, y5, m5, x1, x2, x3, x4, x5, x6, x7, x8, x8, x10, x11, x12, x13, x14, x15 manner enverse trainerstation
Flenith of Losis;	preserve restrict faither processing leading resorting
	x13*3+537*x54*3x4*x15*1+36
	Land A 2019 A 14 Coll March 1 M
	011130443011300743511451.
	In the second
	Conceptual and a second
30-1-310-3100-ye-14	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
***********************	313-121295-12339
191*91*1*415*14121*9	n i styri i Nagi si i ya i i ya i waji i
.,	an in a provinsi pr
p5*3*#15*1+16#*p6*3+2	07911423290142584931422849314207941488491148004831420048314200483144804431484514304431488
1.54.2.975.11208.54.3	

1.92.1.912.111.50.0	
37/8131432134437/9131	3110289915311085915345049511534504911534504911131151153450415345041591153450415911534504051153150115911533504
12-82-1-812-5138-50-3	
14**	
2*94*5*833*3*314*5478	
1*/2*1*/3*2*634*1+154	
2+12+1+33+345+1+33+1+	
All and the first states	

Gröbner basis of SingV(I)

Gröbner basis of SingV(I)

The Gröbner bases we obtain are special: they contain linear polynomials defining \mathcal{O} .

Geometric interpretation when p is too small for genericity

 $\operatorname{Sing}(V(I)) \cap \mathcal{O}$ is the component of highest dimension of $\operatorname{Sing}(V(I))$.

Spoiler: this algorithm is too expensive to threaten UOV.

From quadratic forms to linear algebra

[Kipnis-Shamir 1998]

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

From quadratic forms to linear algebra

[Kipnis-Shamir 1998]

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

Generalisation to UOV

[Kipnis, Patarin, Goubin 1999]

 $\mathbf{x} \in \mathcal{O}$ is an eigenvector of $P_m^{-1} \sum_{i=1}^{m-1} y_i P_i$ with probability $\approx q^{2m-n}$. Exp-time.

From quadratic forms to linear algebra

[Kipnis-Shamir 1998]

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

Generalisation to UOV

[Kipnis, Patarin, Goubin 1999]

$$x \in \mathcal{O}$$
 is an eigenvector of $P_m^{-1} \sum_{i=1}^{m-1} y_i P_i$ with probability $\approx q^{2m-n}$. Exp-time.

Previous work

[KS'98] computes singular points of the intersection of two quadrics.[Luyten '23][KPG'99] computes singular points of $V(\mathcal{I})$.Beullens, Castryck '23

From quadratic forms to linear algebra

[Kipnis-Shamir 1998]

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

Generalisation to UOV

[Kipnis, Patarin, Goubin 1999]

$$x \in \mathcal{O}$$
 is an eigenvector of $P_m^{-1} \sum_{i=1}^{m-1} y_i P_i$ with probability $\approx q^{2m-n}$. Exp-time.

Previous work

[KS'98] computes singular points of the intersection of two quadrics.[Luyten '23][KPG'99] computes singular points of $V(\mathcal{I})$.Beullens, Castryck '23

Geometric interpretation of an old attack

[KS'98/KPG'99] are (hybrid) singular point computations. Weaken hypotheses and support heuristic analysis by estimating $|Sing(V(I))|_{\mathbb{F}_q}$ with the Lang-Weil bound.

Objective: Find \mathcal{O} , the secret key.

1 What is special about \mathcal{O} , compared to the rest of V(I)?

2 What is special about V(I), compared to other varieties ?

3 Can \mathcal{O} be hidden with a perturbation or random equations?

4 Can you compress by embedding your key in a field extension?

UOV+

[Faugère, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace $t \leq 8$ polynomials by random polynomials, and mix. $\mathcal{P} = S \circ \mathcal{F} \circ A$

Idea: Tradeoff between signing time and key size.

$UOV \hat{+}$ [Faugère, Macario-Rat, Patarin, Perret 2022]Start with a UOV secret key, replace $t \leq 8$ polynomials by random polynomials, andmix. $\mathcal{P} = S \circ \mathcal{F} \circ A$ Idea: Tradeoff between signing time and key size.Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert S.

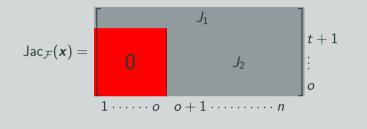
UOV+

[Faugère, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace $t \le 8$ polynomials by random polynomials, and mix. $\mathcal{P} = S \circ \mathcal{F} \circ A$

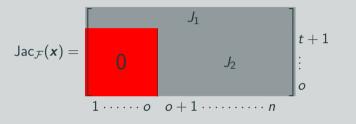
Idea: Tradeoff between signing time and key size.

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .


Geometric interpretation

Let $\mathcal{I} = \langle \mathcal{P}(\mathbf{x}) \rangle$. $V(\mathcal{I})$ is the intersection of a UOV variety with t generic quadrics.

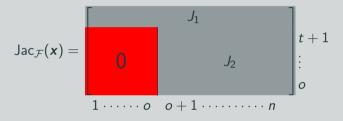
$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$


Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:



Observation

The singular locus of $V(\mathcal{I})$ contains $(\operatorname{Sing} V(\mathcal{J})) \cap V(\mathcal{G})$.

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:

Observation

The singular locus of $V(\mathcal{I})$ contains $(\operatorname{Sing} V(\mathcal{J})) \cap V(\mathcal{G})$.

Dimension computation

 $\hat{+}$ reduces the dimension of the singular locus by at most 2t.

From singular points to a key recovery attack

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(x) \neq 0$.

Can we decide " $x \in O$?" faster than $O(q^t n^{\omega})$?

Adapting " $x \in O$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Adapting " $x \in O$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

[P. 2024]

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

Adapting " $x \in \mathcal{O}$?" to UOV $\hat{+}$ efficiently

[P. 2024]

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

Restricting to an easier UOV $\hat{+}$ instance

 $\mathcal{P}_{|T_xV}(\mathbf{x})$ is a UOV+ instance with *o* equations but n - o + 1 variables and an o - t dimensional UOV trapdoor.

Adapting " $x \in \mathcal{O}$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

 $\mathcal{P}_{|\mathcal{T}_{x}V}(\mathbf{x})$ is a UOV+ instance with *o* equations but n - o + 1 variables and an o - t dimensional UOV trapdoor.

Distinguisher

 $\mathbf{x} \in \mathcal{O} \implies V(\mathcal{P}_{|T_{\mathbf{x}}V}(\mathbf{x}))$ has constant codimension. Solved in polynomial time.

Application: New attack on UOV $\hat{+}/VOX$

$x \in \mathcal{O}$? in polynomial time

Decide $\mathbf{x} \in \mathcal{O}$? in $O(\binom{n-o+2t-3}{4}^2\binom{n-2o+2t+1}{2})$.

3

Application: New attack on UOV $\hat{+}/VOX$

$x \in \mathcal{O}$? in polynomial time

Decide
$$\mathbf{x} \in \mathcal{O}$$
? in $O(\binom{n-o+2t-3}{4}^2\binom{n-2o+2t+1}{2})$.

Singular points attack and asymptotic result

Singular points of $V(\mathcal{J})$ leak the trapdoor without inverting \mathcal{S} :

$$O(\underbrace{q^{n-2o+t}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from } x \in \mathcal{O}?})$$

Application: New attack on UOV $\hat{+}/VOX$

$x \in \mathcal{O}$? in polynomial time

Decide
$$\mathbf{x} \in \mathcal{O}$$
? in $O(\binom{n-o+2t-3}{4}^2\binom{n-2o+2t+1}{2})$.

Singular points attack and asymptotic result

Singular points of $V(\mathcal{J})$ leak the trapdoor without inverting \mathcal{S} :

$$O(\underbrace{q^{n-2o+t}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from } \mathbf{x} \in \mathcal{O}?})$$

Previous result

This attack improves the Kipnis-Shamir attack which required:

$$O(q^{n-2o+2t}n^{\omega})$$

25/31

[Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

Practical results and bit complexity

Parameters	I		V
log ₂ gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 4: $x \in \mathcal{O}$? with msolve on UOV $\hat{+}$.

Practical results and bit complexity

Parameters	I		V
log ₂ gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 4: $x \in \mathcal{O}$? with molve on UOV $\hat{+}$.

We add $\log_2(q) \times (n - 2o + t)$ to obtain the full cost:

Parameters	I	- 111	V
Security level (log ₂ gates)	143	207	272
Kipnis-Shamir (log ₂ gates)	166	233	313
This work (log ₂ gates)	140	188	243

Figure 5: Full attack on UOV^{+} .

Objective: Find \mathcal{O} , the secret key.

1 What is special about \mathcal{O} , compared to the rest of V(I)?

2 What is special about V(I), compared to other varieties ?

 ${f S}$ Can ${\cal O}$ be hidden with a perturbation or random equations?

4 Can you compress by embedding your key in a field extension?

The Quotient Ring transform

• Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.

The Quotient Ring transform

- Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.

The Quotient Ring transform

- Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^\ell} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.

The Quotient Ring transform

- Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^\ell} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

The Quotient Ring transform

- Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

VOX: QR-UOV $\hat{+}$

$$\operatorname{UOV}\hat{+}(q^{\ell},m/\ell,n/\ell,m,t) \xrightarrow{}_{\operatorname{QR}} \operatorname{UOV}\hat{+}(q,m,n,t).$$

The Quotient Ring transform

- Generate a UOV (q^{ℓ}, m, n) key with ℓm equations.
- Represent it in \mathbb{F}_q via a quotient $\mathbb{F}_{q^{\ell}} \cong \mathbb{F}_q[x]/\langle f \rangle$.
- This is a (non-generic) UOV instance for parameters $q, \ell m, \ell n$.
- Secure only if $UOV(q^{\ell}, m, n, \ell m)$ and $UOV(q, \ell m, \ell n)$ are.

VOX: QR-UOV $\hat{+}$

$$\operatorname{UOV}\hat{+}(q^{\ell},m/\ell,n/\ell,m,t) \xrightarrow{}_{\operatorname{QR}} \operatorname{UOV}\hat{+}(q,m,n,t).$$

MinRank attacks on the big field instance of VOX

- Initial parameters are not secure
- Practical attack on all new parameters

[Furue, Ikematsu 2023]

The dimension of the public key variety in $\mathbb{F}_{q^{\ell}}$

 ℓm generic quadratic polynomials in *n* variables define a variety of dimension $n - \ell m$.

 $\mathsf{In}\;(\mathsf{QR}\operatorname{-})\mathsf{UOV},\,\mathcal{O}\subset V(\mathcal{I})\implies \mathsf{dim}(V(\mathcal{I}))\geq \mathsf{dim}\,\mathcal{O}\geq m$

The dimension of the public key variety in $\mathbb{F}_{q^{\ell}}$...

 ℓm generic quadratic polynomials in *n* variables define a variety of dimension $n - \ell m$.

 $\mathsf{In}\;(\mathsf{QR}\operatorname{-})\mathsf{UOV},\;\mathcal{O}\subset V(\mathcal{I})\implies \mathsf{dim}(V(\mathcal{I}))\geq \mathsf{dim}\;\mathcal{O}\geq m$

... leaks the secret key

If $m \ge n - \ell m$ then the big-field polynomial system is easier to solve than a generic system, and the solutions are points of \mathcal{O} .

The dimension of the public key variety in $\mathbb{F}_{q^{\ell}}$...

 ℓm generic quadratic polynomials in *n* variables define a variety of dimension $n - \ell m$.

 $\mathsf{In}\;(\mathsf{QR}\operatorname{-})\mathsf{UOV},\;\mathcal{O}\subset V(\mathcal{I})\implies \mathsf{dim}(V(\mathcal{I}))\geq \mathsf{dim}\;\mathcal{O}\geq m$

... leaks the secret key

If $m \ge n - \ell m$ then the big-field polynomial system is easier to solve than a generic system, and the solutions are points of \mathcal{O} .

This attack is taken into account in [QRUOV] but not in [VOX].

Practical attack on VOX [VOX@NIST 2023], [VOX minus, Varjabedian 2025]

Dimension computation

 $UOV + (q^{\ell}, m/\ell, n/\ell, m, t)$ defines a **variety that contains** $\mathcal{O} \cap V(\mathcal{G})$ but it should be the empty variety for a generic system.

Practical attack on VOX [VOX@NIST 2023], [VOX minus, Varjabedian 2025]

Dimension computation

 $UOV + (q^{\ell}, m/\ell, n/\ell, m, t)$ defines a variety that contains $\mathcal{O} \cap V(\mathcal{G})$ but it should be the empty variety for a generic system.

Subfield attack

Practical key recovery attack on the big field instance and use of subfields

 $\mathbb{F}_{a^{\ell'}} \subset \mathbb{F}_{a^{\ell}}$ to attack a subset of new parameters.

Practical attack on VOX [VOX@NIST 2023], [VOX minus, Varjabedian 2025]

Dimension computation

 $UOV + (q^{\ell}, m/\ell, n/\ell, m, t)$ defines a **variety that contains** $\mathcal{O} \cap V(\mathcal{G})$ but it should be the empty variety for a generic system.

Subfield attack

Practical key recovery attack on the big field instance and use of subfields

 $\mathbb{F}_{q^{\ell'}} \subset \mathbb{F}_{q^{\ell}}$ to attack a subset of new parameters.

Parameters	I	lc		Illa	V	Vb
l	6	9	7	15	8	14
ℓ'	6	3	7	5	8	7
time	0.29s	2 ⁶⁷ gates ⁴	1.35s	56.7s	0.56s	6.11s

Figure 6: Timing for the subfield attack on VOX (2023) on my laptop.

⁴400 CPU-hours on a server in practice.

Thank you for your attention!

One vector to full key recovery in polynomial time

From **one vector** in \mathcal{O} , return a basis of \mathcal{O} in polynomial time.

Singular points of UOV and UOV $\hat{+}$

- V(I) has a large singular locus.
- Singular points of UOV $\hat{+}$ yield faster attacks.
- Key recovery from one vector for UOV $\hat{+}$ in polynomial time.

Future/On-going work

Find efficient algorithms to achieve the Debarre and Manivel bound.

- In the generic case, as a precomputation for solving systems.
- In the UOV case, as key recovery attacks.

Level	q, o, v, t	epk gain vs UOV
I	251, 48, 55, 6	36%
111	1021, 70, 79, 7	44%
V	4093, 96, 107, 8	27%

(5) Open questions and future/on-going work

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound⁵

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n.

⁵The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound⁵

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n.

• If $\delta(n, s, r) < 0$, then X contains no (proj.) r-dimensional subspaces

⁵The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound⁵

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n.

- If $\delta(n, s, r) < 0$, then X contains no (proj.) r-dimensional subspaces
- Otherwise, $\delta(n, s, r)$ is the dimension of the variety of linear spaces included in X.

⁵The original statement is for arbitrary degrees.

Let
$$\delta(n, s, r) = (r + 1)(n - r) - s\binom{r+2}{2}$$

The Debarre and Manivel Bound⁵

[Debarre, Manivel 1998]

Let X be a generic complete intersection of m quadrics of rank n.

- If $\delta(n, s, r) < 0$, then X contains no (proj.) r-dimensional subspaces
- Otherwise, $\delta(n, s, r)$ is the dimension of the variety of linear spaces included in X.

Application to UOV

If $\alpha = \frac{n}{s}$ is a constant, then a UOV secret is characterized by a constant number of polynomials from the public key.

For practical parameters, 3 or 4 polynomials are enough.

⁵The original statement is for arbitrary degrees.

Two possible directions:

Solving underdetermined polynomial systems

Computing the largest subspace in generic complete intersections.

 \rightarrow improves forgery attacks against UOV.

Original key recovery attacks against UOV

Computing the smallest non-generic subspace in a UOV variety.

Generic application: How to solve underdetermined systems?

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that $p_{1|S}, \ldots, p_{k|S} = 0$.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that p_{1|S},..., p_{k|S} = 0.
b Solve P_{|S}(x) = 0, a system of s - k equations and variables.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that p_{1|S},..., p_{k|S} = 0.
b Solve P_{|S}(x) = 0, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{5}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step a in prob. polynomial time for k = 2.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that p_{1|S},..., p_{k|S} = 0.
b Solve P_{|S}(x) = 0, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{5}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step **a** in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically. $\frac{n}{s} = \frac{5}{2} \rightarrow k = 3$.

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that p_{1|S},..., p_{k|S} = 0.
b Solve P_{|S}(x) = 0, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{5}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step a in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically. $\frac{n}{s} = \frac{5}{2} \rightarrow k = 3$.

• Efficient algorithm for k = 3?

<u>Task</u>: Find one solution of $\mathcal{P}(\mathbf{x}) = 0 \in \mathbb{F}_q[x_1, \dots, x_n]$

a Compute a subspace S of dimension s - k such that p_{1|S},..., p_{k|S} = 0.
b Solve P_{|S}(x) = 0, a system of s - k equations and variables.

Algorithms using this approach for systems $\frac{n}{s} = \frac{5}{2}$

- [Thomae, Wolf 2012] step **a** in polynomial time for k = 1.
- (WIP) [Reid 72]: step **a** in prob. polynomial time for k = 2.

Maximal precomputation

Debarre and Manivel: maximal possible value for k generically. $\frac{n}{s} = \frac{5}{2} \rightarrow k = 3$.

- Efficient algorithm for k = 3?
- Does step **a** become more expensive than step **b**?

• Tangent spaces reveal information only if $x \in \mathcal{O}$.

- Tangent spaces reveal information only if $x \in \mathcal{O}$.
- Singular points are expensive to compute.

- Tangent spaces reveal information only if $x \in \mathcal{O}$.
- Singular points are expensive to compute.
- Singular points require $\frac{m}{2} + 1$ polynomials: does not achieve the bound.

$$I = \langle p_1, p_2, p_3 \rangle$$
 and $\mathcal{O} \subset V(I)$, dim $\mathcal{O} = s$, $\delta(n-1, s-1, 3) < 0$

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{O}\subset V(I)$, dim $\mathcal{O}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{O}\subset V(I)$, dim $\mathcal{O}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

Motivation: the degree of these varieties is controlled, which yields efficient algorithms.

$$I=\langle p_1,p_2,p_3
angle$$
 and $\mathcal{O}\subset V(I)$, dim $\mathcal{O}=s$, $\delta(n-1,s-1,3)<0$

Polar varieties

Critical locus of the projection of V(I) on well-chosen space Π .

Motivation: the degree of these varieties is controlled, which yields efficient algorithms. **Challenge**

How to choose Π so that it is easy to compute the polar variety when \mathcal{O} is unknown?

 \rightarrow Easy to distinguish UOV from generic systems with polar varieties... when ${\cal O}$ is known.