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Abstract. We consider the problem of computing a grevlex Gröbner basis
for the set Fr(M) of minors of size r of an n × n matrix M of generic linear

forms over a field of characteristic zero or large enough. Such sets are not

regular sequences; in fact, the ideal ⟨Fr(M)⟩ cannot be generated by a regular
sequence. As such, when using the general-purpose algorithm F5 to find the

sought Gröbner basis, some computing time is wasted on reductions to zero.
We use known results about the first syzygy module of Fr(M) to refine the F5

algorithm in order to detect more reductions to zero. In practice, our approach

avoids a significant number of reductions to zero. In particular, in the case
r = n − 2, we prove that our new algorithm avoids all reductions to zero,

and we provide a corresponding complexity analysis which improves upon the

previously known estimates.

1. Introduction

Motivation and problem. Let M be an n × n matrix with entries in the poly-
nomial ring R = k[x1, . . . , xk] where k is a field. For r < n, we let Ir(M) be
the determinantal ideal generated by the sequence Fr(M) of all minors of M
of size r + 1. We consider the problem of computing the common roots in k̄k
to Fr(M), hence those points at which M has rank at most r. This NP-hard
problem MinRank [BFS99], and its variants where M may be rectangular, lies
at the heart of multivariate cryptography. It is at the foundations of several
schemes [Cou01, Pat96, KS99] and is still used to assess the security of encryp-
tion and signature schemes [FLP08, DS05, Beu22, BBC+22, BBB+20, BBC+20].

Determinantal ideals also arise in fundamental areas such as effective real alge-
braic geometry as they encode critical points (see e.g. [FSS12, Spa14]), then used
to solve a variety of problems. This includes polynomial optimization [GSED14,
BGHS14], computing sample points and answering connectivity queries in smooth
real algebraic sets [SS03, BGHP05, BGH+10, SS17], determining the dimension of
real algebraic sets [BS15, LS21a], and quantifier elimination over the reals [HS09,
HS12, LS21b].

Determinantal ideals and polynomial system solving. Determinantal ideals enjoy
plenty of combinatorial and algebraic properties [BV88, Las78, BCRV22] which can
be leveraged to better understand the complexity of computing their roots, and to
adapt and accelerate polynomial system solvers in this context. The most advanced
results in this direction have been achieved in the context of symbolic homotopy
techniques with the design of an adapted homotopy pattern [HSEDSV21] which
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has next been refined to take into account specific structures when the entries of
the matrix M are sparse [LSSV21].

In this paper, we focus on the problem of computing Gröbner bases of the
ideal Ir(M) w.r.t. some admissible monomial ordering, under the assumptions that
Ir(M) has dimension 0 (or is R) and that the entries of M have total degree at
most 1.

Gröbner bases algorithms and determinantal ideals. Since Buchberger’s algo-
rithm [Buc65], the quest for fast algorithms for computing Gröbner bases has been
driven by two main issues: (i) finding better strategies for handling critical pairs
during the Gröbner basis construction and (ii) hunting reductions to 0 which are
instrinsically related to algebraic objects named syzygies that are associated to
the ideal under consideration. Issue (i) has been addressed by Faugère’s cele-
brated F4 algorithm [Fau99], which also made explicit the use of linear algebra
subroutines in Gröbner bases algorithms. While a lot remains to be done in this
direction (see e.g. [BESED22]), much attention has focused on issue (ii) and vari-
ants of Faugère’s F5 algorithm [Fau02] have been developed in several directions
to give rise to signature-based Gröbner bases algorithms (see [EF16] and references
therein). One byproduct of these works, which finds its roots in foundational works
by Lazard and Giusti [Laz83, Giu84], is that they paved the way to complexity
estimates under some regularity assumptions, thanks to the reduction to linear al-
gebra and degree bounds on the maximum degree reached during the computation
(related to the classical notion of index of regularity [CLO15, Chap. 9, §3]).

This has been developed, for determinantal ideals in [FSS10, FSS13] which yield
complexity estimates for computing Gröbner bases under regularity assumptions
(which are generic in the sense of algebraic geometry). These estimates are coarse:
they do not leverage the shape of the matrices encountered during the computation.

Already in the simpler case of regular sequences, by exploiting the fact that the
F5 algorithm avoids all reductions to zero in this case, a sharper complexity analysis
of F5 [BFS15] shows significant improvements against such coarse estimates.

In the context of determinantal ideals, mimicking this to get better complexity
estimates is premature. Indeed, Fr(M) is not a regular sequence, and running the
F5 algorithm with input Fr(M) does lead to a number of reductions to 0. Hence
there is a need to refine and tune the F5 algorithm for determinantal ideals. Such
a refinement has already been achieved for boolean polynomial systems [BFSS13].
However, recall that these reductions to 0 are related to so-called syzygy modules of
the ideal under study. Syzygy modules of determinantal ideals are notoriously more
intricate than those of ideals generated by regular sequences or boolean systems.

In this paper, we tackle the following problems: (i) What is the suitable notion
of regularity one can attach to determinantal ideals in order to hunt reductions to
0? (ii) What are the properties of modules of syzygies associated to determinantal
ideals one can leverage under this notion of regularity? (iii) How to refine the F5

algorithm for determinantal ideals to obtain fewer reductions to 0 and, ultimately,
are there some instances of determinantal ideals for which one can prove that there
are no reductions to 0?

Foundations. We begin by recalling first the connection between free resolu-
tions and syzygy modules of ideals, and then the syzygy criterion from [EF16]
which reveals the link between free resolutions and reductions to zero in F5. In
Algorithm 1, we give an altered version of the standard matrix-F5 algorithm: it
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computes Gröbner bases for modules over R and exploits the full syzygy criterion
(see Proposition 4), allowing us to leverage reductions to zero in lower degrees to
avoid reductions to zero in subsequent degrees.

Explicitly describing free resolutions of determinantal ideals is in general an
extremely difficult problem. It is in fact not known if there even exists a minimal
free resolution of the system of (r+1)-minors of a matrix of indeterminates over Z
which remains minimal under arbitrary base change. While the Lascoux resolution
[Las78] provides a free resolution of determinantal ideals, it is not minimal and
requires that the coefficient ring have characteristic zero. Instead of computing a
free resolution of these determinantal ideals directly, we instead adopt a strategy
which relies on a theorem of Kurano [Kur89]. It describes the connection between
syzygies of (r+1)-minors of a matrix M and syzygies between (r+1)-minors of the
(r+2)× (r+2) submatrices of M . Using this theorem, we essentially reduce to the
case r = n − 2. In this case, an explicit free resolution exists, given by Gulliksen
and Neg̊ard in [BV88].

Main results. Having made this reduction, we establish the genericity property
which our ideals must satisfy in order for the Gulliksen-Neg̊ard complex to be exact:
for any 1 ≤ r < n, the ideal of (r+ 1)-minors of an n× n matrix of indeterminates
has the so-called Cohen-Macaulay property. Thus, for a suitably generic choice of
coefficients of the linear forms in M , the ideal Ir(M) is Cohen-Macaulay as well.
It is precisely under the genericity assumption derived from this notion that the
complex of Gulliksen and Neg̊ard is a free resolution of In−2(M), and can therefore
be exploited to avoid reductions to zero.

By tracing basis elements for the free modules which make up the complex of
Gulliksen and Neg̊ard, we are able (Theorem 9) to explicitly compute a generating
set for the first syzygy module of the system of (n− 1)-minors of an n× n matrix
of linear forms, provided the above stated genericity assumption holds. Kurano’ s
result [Kur89] states that for any 1 ≤ r < n, the first module of syzygies Syz(Fr(M))
is generated by the syzygies between the (r + 1)-minors of each (r + 2) × (r + 2)
submatrix of M .

Therefore, combining the complex of Gulliksen and Neg̊ard with the result of
[Kur89], we are able to explicitly compute a full generating set for Syz(Fr(M)),
and subsequently provide Algorithm 2, which computes a grevlex Gröbner basis for
Ir(M) while avoiding all reductions to zero which arise from the syzygies in degree
one.

Under our genericity assumption, when r = n−2, the Gulliksen-Neg̊ard complex
allows us to compute generating sets for the higher syzygy modules of Fn−2(M) as
well. In Proposition 19, we give explicit generators for the second syzygy module
of In−2(M). This study culminates in Algorithm 3 which is an altered version of
matrix-F5 which avoids all reductions to zero. Finally, in Proposition 23, we again
exploit the Gulliksen-Neg̊ard complex to provide an explicit form for the Hilbert
series of In−2(M) when the entries of M are sufficiently generic homogeneous linear
forms, and when In−2(M) has dimension zero (k = 4). In Proposition 24, we use
this series to give a complexity analysis of our new algorithm in the case r = n− 2,
demonstrating that asymptotically, the arithmetic complexity of our new algorithm
is in O(n4ω−1), while the current best-known asymptotic arithmetic complexity of
computing a grevlex Gröbner basis for In−2(M) is in O(n5ω+2). Here, 2 ≤ ω ≤ 3
is a complexity exponent for matrix multiplication.
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We conclude by giving, in Table 1, some experimental data showing the amount
of reductions to zero that is saved by our contributions and their practical interest.

Perspectives. In [Ma94], it is shown that in some cases, one can obtain generators
for the second syzygy module of Ir(M) by lifting second syzygies of minors of
submatrices, as is the case for first syzygies. Thus, the careful treatment of the
Gulliksen-Neg̊ard complex which we give in this paper could be exploited in future
works to avoid more reductions to zero when r < n− 2.

Similarly, supposeM is no longer a square matrix, but is instead an n×m, n ̸= m
matrix of generic homogeneous linear forms over k. Then when r = min(n,m)− 1
so that Ir(M) is the ideal of maximal minors of M , the Eagon-Northcott complex
(see [BV88, 2.C] and [EN62]) provides a free resolution of Ir(M). Similarly, when
r = min(n,m)−2, the Akin-Buschbaum-Weyman complex (see [ABW81]) provides
a free resolution of Ir(M). Again, the tools and methods brought in this paper
could be adapted to accelerate Gröbner bases computations in this case and yield
new complexity bounds.

Finally, in full generality, the Lascoux resolution (see [Las78]), is a free resolution
for Ir(M) for any n,m, r provided Q ⊆ k. Again, one may expect refined F5

algorithms by leveraging this resolution.

2. Preliminaries

2.1. Syzygies. We recall basic definitions and properties of syzygy modules, when
working over the Noetherian ring R = k[x1, . . . , xk]. We refer to [Eis95] for more
details. For a finitely generatedR-moduleM = ⟨p1, . . . , pℓ⟩, the first syzygy module
ofM is defined as

Syz(M) := {(s1, . . . , sℓ) ∈ Rℓ : s1p1 + · · ·+ sℓpℓ = 0}.
This definition depends on the generators; we sometimes write Syz(p1, . . . , pℓ).
From there one inductively defines the j-th syzygy module of M as follows. Since
R is Noetherian, Syzj−1(M) is finitely generated. With generators {q1, . . . , qt} for
Syzj−1(M),

Syzj(M) := {(s1, . . . , st) ∈ Rt : s1q1 + · · ·+ stqt = 0}.

It is frequent thatM is the ideal generated by polynomials F = (f1, . . . , fℓ) ⊆ R.
Then, the first syzygy module of F contains the Koszul syzygies, which are those
following from the commutativity of polynomial multiplication: fifj − fjfi = 0. In
fact, they generate Syz(F ) in the case of regular sequences (that is, when fi is not
a zero-divisor in R/⟨f1, . . . , fi−1⟩ for any 2 ≤ i ≤ ℓ):

Theorem 1 ([Eis05, Thm.A.2.49]). If (f1, . . . , fℓ) is a regular sequence, then
Syz(F ) = ⟨fiej − fjei : 1 ≤ i, j ≤ ℓ, i ̸= j⟩ where ei is i-th standard basis vector.

In the context of Fr(M), while the Koszul syzygies are among the syzygies of
the minors of M , they do not generate Syz(Fr(M)).

2.2. Free resolutions. As highlighted in Section 1, in relation to the k-th syzygy
module of Fr(M), our approach involves the description of a free resolution of
Ir(M) (when r = n − 2). For a finitely generated R-moduleM, a free resolution
ofM is an exact complex

· · · dt+1−−−→ Et
dt−→ Et−1

dt−1−−−→ · · · d2−→ E1
d1−→ E0

ϵ−→M→ 0
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where for each j > 0, Ej is a finitely generated free R-module, and the dj are R-
module homomorphisms. The exactness condition precisely means that ker(dj) =
im(dj+1). The free resolution E• is said to be finite if there exists some m ≥ 0 such
that for all j > m, Ej = {0}; then the smallest such m is called the length of E•.
In general, modules need not have finite free resolutions; however, it is the case for
finitely generated modules over R = k[x1, . . . , xk]:

Theorem 2 (Hilbert’s syzygy theorem). LetM be a finitely generated R-module.
There exists a free resolution

0→ Em
dm−−→ Em−1

dm−1−−−→ · · · d2−→ E1
d1−→ E0

ϵ−→M→ 0

whose length m is at most the number of variables k.

Proposition 3. LetM be a finitely generated R-module, E• be a free resolution
of M of length m ≤ k, and ℓ be the rank of E0. Let {e1, . . . , eℓ} be the standard
basis for E0, and pi = ϵ(ei) for 1 ≤ i ≤ ℓ. Then ker(ϵ) = Syz(p1, . . . , pℓ).

Following Proposition 3, if we fix a generating set {q1, . . . , qt} of Syz(M) =
ker(ϵ), then we can take E1 = Rt and, as a matrix, d1 = (qij)1≤i≤t,1≤j≤ℓ. Contin-
uing in this fashion, we construct d2, . . . , dm such that Syzj+1(M) = ker(dj) for
1 ≤ j ≤ m.

2.3. The matrix-F5 algorithm. The matrix-F5 algorithm [BFS15] is based on
F5 [Fau02]. For the needs of this paper, we describe here a version of the former
which exploits a more general syzygy criterion of the latter, as explained below.

Throughout, we will take ≺ to be the grevlex monomial order on R, and ≺pot

to be the position over term order on the free module Rt, for any t ≥ 1. That is,
for monomials x = (0, . . . , 0, xi, 0, . . . , 0) and y = (0, . . . , 0, yj , 0, . . . , 0) in Rt with
respective supports i and j, x ≺pot y if and only if i < j or (i = j and xi ≺ yj).

2.3.1. Macaulay matrices; signatures. We take the standard grading by degree on
R, which induces a grading on the free module Rt for any t ∈ Z>0. Let F =
(f1, . . . , fℓ) ⊆ Rt be a sequence of homogeneous elements of Rt. That is, for
each 1 ≤ i ≤ ℓ, all coordinates of fi (with respect to the standard basis of Rt)
are homogeneous of the same degree. We assume d1 ≤ d2 ≤ · · · ≤ dℓ, where
di = deg(fi), without loss of generality. For d ≥ d1 and 1 ≤ i ≤ ℓ, let Md,i be
the Macaulay matrix of (f1, . . . , fi) in degree d. Each row of Md,i corresponds to a
polynomial τfj where 1 ≤ j ≤ i, dj ≤ d, and τ is a monomial of degree d− dj ; the
pair (j, τ) is called the signature of this row. The columns of Md,i are indexed by
the monomials of Rt of degree d, and are ordered in decreasing order with respect
to ≺pot. We take a position over term order ≺sig on the set of pairs (j, τ) with
1 ≤ j ≤ ℓ and τ a monomial of R:

(j′, τ ′) ≺sig (j, τ) if j′ < j or (j′ = j and τ ′ ≺ τ).

A valid row operation on Md,i consists in adding to a row with signature (j, τ) some
k-multiple of a row with signature which is ≺sig-less than (j, τ). We denote by M̄d,i

any row echelon form of Md,i obtained via a sequence of valid row operations. We
will denote by lt(M̄d,i) the monomials corresponding to the pivot columns of M̄d,i.
Recall that the f1, . . . , fℓ are homogeneous. The nonzero rows of M̄d,i therefore
form the elements of degree d of a Gröbner basis for ⟨f1, . . . , fi⟩. For an integer
D ≥ 0, a set G is called a D-Gröbner basis for ⟨F ⟩ if for all elements f ∈ ⟨F ⟩ of
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degree at most D, ltpot(f) ∈ ltpot(⟨G⟩). Thus, a D-Gröbner basis forM = ⟨F ⟩ is
obtained by computing M̄d,ℓ for all d1 ≤ d ≤ D. Note that when t = 1, f1, . . . , fℓ
are polynomials, andM = ⟨F ⟩ is simply a homogeneous ideal ofR, whence the rows
of M̄d,i form the elements of degree d of a traditional Gröbner basis for ⟨f1, . . . , fi⟩.

2.3.2. The syzygy criterion. When there are syzygies amongst f = (f1, . . . , fℓ), the
Macaulay matrices Md,i do not have full rank. With prior knowledge of these syzy-
gies, the matrix-F5 algorithm can avoid rows which reduce to zero when computing
M̄d,i from Md,i.

Proposition 4 (Syzygy Criterion, [EF16, Lem. 6.4]). Let s = (s1, . . . , sℓ) be a
homogeneous syzygy of f and ltpot(s) = τei. Then

(1) The row of Mdeg τ+di,i with signature (i, τ) is a linear combination of rows of
Mdeg τ+di,i of smaller signature.

(2) For any monomial σ ∈ R, the row of Mdeg τ+deg σ+di,i with signature (i, στ) is
a linear combination of rows of Mdeg τ+deg σ+di,i of smaller signature.

Proof. We have τfi = −
∑

j ̸=i sjfj − fi(si − ltpot(s)). The module element τfi
corresponds to the row of Mdeg τ+di,i with signature (i, τ), while

∑
j ̸=i sjfj−fi(si−

ltpot(s)) is a k-linear combination of other rows of Mdeg τ+di,i. This proves Item 1.
Suppose now that the row with signature (i, τ) of M̄deg τ+di,i is a zero row. Then

the polynomial τfi is a k-linear combination of rows of Mdeg τ+di,i with smaller
signature, i.e.,

τfi =
∑

(i′,τ ′)≺sig(i,τ)

c(i′,τ ′)τ
′fi′ for some c(i′,τ ′) ∈ k.

We can write στfi =
∑

(i′,τ ′)≺sig(i,τ)
c(i′,τ ′)στ

′fi′ , for any monomial σ in R. Hence,

the row with signature (i, στ) of Mdeg τ+deg σ+di,i is a k-linear combination of rows
with smaller signature. □

If t = 1, the Koszul syzygies fjfi − fifj = 0 for all 1 ≤ i, j ≤ ℓ always exist,
and produce linear dependencies between the rows of the Macaulay matrices. The
matrix-F5 algorithm works by interpreting these syzygies in this way to predict
the signatures of rows which will reduce to zero when computing M̄d,i from Md,i,
and avoiding such rows altogether. Succinctly, this algorithm utilizes the following
criterion, which is a specialization of Proposition 4.

Proposition 5 (F5 Criterion, [Fau02, Thm. 1]). The rows with signature (i, τ) of
Md,i reduce to zero in M̄d,i, for all τ ∈ lt(M̄d−di,i−1).

2.3.3. The matrix-F5 algorithm. When t = 1, combining the syzygy criterion with
Proposition 5 leads to the matrix-F5 algorithm. It works incrementally by degree
and index. That is, for a fixed degree d, it first computes the elements of degree d
of a Gröbner basis for (f1) by reducing the matrix Md,1 to M̄d,1, and then builds
the matrix Md,2 using M̄d,1. Continuing in this fashion, it eventually builds and
reduces Md,ℓ, yielding the elements of degree d of a Gröbner basis for the full system
F .

In Algorithm 1, we complement the description of this algorithm from [BFS15]
by integrating Item 2 of Proposition 4. This is important since it allows us to avoid
a significant number of reductions to zero that would occur without it. We allow
for the input of precomputed syzygies of F in order to exploit Proposition 4 and
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we allow t ≥ 1. The termination and correction of Algorithm 1 is from [BFS15,
Thm. 9] when t = 1, and the same induction argument works when t > 1.

Algorithm 1 Matrix-F5(F,D, S)

Input: A sequence F = (f1, . . . , fℓ) of homogeneous elements of degrees d1 ≤ · · · ≤
dℓ in k[x1, . . . , xk]

t; a degree bound D; a set S of syzygies of F .
Output: The reduced POT D-Gröbner basis for ⟨F ⟩.
1: for i ∈ {1, . . . , ℓ} do Gi ← ∅
2: for d from d1 to D do
3: Md,0 ← ∅; Crit← ltpot(S)
4: for i from 1 to ℓ do
5: if d < di then Md,i ←Md,i−1

6: else if d = di then
7: Md,i ← concatenate the row fi to M̄d,i−1 with signature (i, 1)
8: else
9: Md,i ← M̄d,i−1

10: if t = 1 then
11: for τ ∈ lt(Md−di,i−1) do
12: Crit← Crit ∪ {(i, τ)}
13: for f ∈ rows(M̄d−1,i)∖ rows(M̄d−1,i−1) do
14: (i, τ)← signature of f
15: if f = 0 then
16: for j ∈ {1, . . . , k} do
17: Crit← Crit ∪ {(i, τ · xj)}
18: for f ∈ rows(Md−1,i)∖ rows(Md−1,i−1) do
19: (i, τ)← signature of f
20: for j ∈ {max{j′ : xj′ | τ}, . . . , k} do
21: if (i, τ · xj) /∈ Crit then
22: Md,i ← concatenate the row xjf to Md,i with signature (i, τ · xj)

23: M̄d,i ← reduced row echelon form of Md,i obtained via a sequence of
valid elementary row operations

24: Gi ← Gi ∪ {f ∈ rows(M̄d,i) : f /∈ ⟨lt(Gi)⟩}
25: return Gℓ

2.4. Genericity. We take notation from [FSS13, Sec. 2 and 3]. Fix n, k ∈ Z>0.

Define a = {a(i,j)t : 1 ≤ t ≤ k, 1 ≤ i, j ≤ n}. For each 1 ≤ i, j ≤ n, let fi,j =∑k
t=1 a

(i,j)
t xt ∈ k[a, x1, . . . , xk]. We call fi,j a generic homogeneous linear form.

We denote by A the matrix over k[a, x1, . . . , xk] whose (i, j) entry is fi,j . Next,

for a fixed a =
(
a
(i,j)
t

)
∈ k̄k·n2

, we denote by φa the specialization map φa :

k[a, x1, . . . , xk]→ k̄[x1, . . . , xk] which specializes a
(i,j)
t to a

(i,j)
t . We call a map

P : Ideals(k[a, x1, . . . , xk])→ {true, false}.

a property. For an integer 1 ≤ r < n, we will denote by Ir(A ) the ideal of (r + 1)-
minors of A . Subsequently, a property P is called Ir(A )-generic if there exists a

nonempty Zariski open subset U of Akn2

k such that for all a ∈ U , P (φa(Ir(A ))) =
true.
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An important property is the notion of Cohen-Macaulayness. Let I be an ideal
of R. A sequence (f1, . . . , fℓ) ⊆ R is called an I-regular sequence if for all 1 ≤ i ≤ ℓ,
fi is not a zero-divisor in the module I/⟨f1, . . . , fi−1⟩. The ideal I is called Cohen-
Macaulay if there exists an I-regular sequence (f1, . . . , fℓ) such that ℓ = dim(I)
(here dim(I) is the Krull dimension of I in R).

Remark 6. If (f1, . . . , fℓ) is an I-regular sequence, then ℓ ≤ dim(I). Hence, Cohen-
Macaulayness requires that there exists an I-regular sequence of maximal possible
length in R.

Proposition 7. Let CM be the property CM(I) = true if I is Cohen-Macaulay
and CM(I) = false otherwise. Then for any 1 ≤ r ≤ n− 2, CM is Ir(A )-generic.

Proof. Let U be an n × n matrix of indeterminates; Ir(U) is Cohen-Macaulay
[BV88, Thm. 2.5]; [FSS13, Lem. 3] ends the proof. □

3. Syzygies of determinantal ideals

Here, we focus on the syzygies between the minors Fr(M) of order r + 1 of M .
The module Syz(Fr(M)) is known to be generated by syzygies between minors of
order r + 1 of submatrices of M of size (r + 2) × (r + 2) [Kur89, Thm. 5.1]. This
allows us to reduce the problem of computing generators for Syz(Fr(M)) from the
general case to the case r = n−2. The Gulliksen-Neg̊ard complex [GN72, BV88] is
a free resolution of In−2(M). We will exploit this complex to obtain Syz(Fr(M))
first when r = n− 2, then in full generality.

3.1. The Gulliksen-Neg̊ard complex. The Gulliksen-Neg̊ard complex is a free
resolution of In−2(M),

0→ E3
d3−→ E2

d2−→ E1
d1−→ E0

ϵ−→ In−2(M)→ 0.

As such, we can use Proposition 3 to compute the first syzygy module of the set
of generators Fn−2(M) as the kernel of the augmentation map ϵ of this complex.
We recall the construction of the complex here; details and proofs can be found in
[BV88, 2.D].

We denote byMn(R) the set of n× n matrices over R, with the structure of a
freeR-module of rank n2. We will denote by Ei,j the standard (i, j)-th basis matrix
ofMn(R). In this section we will take as generators for In−2(M) the cofactors of
M . To that end, let M∗ = (M∗

i,j)i,j ∈Mn(R) be the matrix of these cofactors.

3.1.1. The modules. We begin by defining the component modules E3, E2, E1, E0.
Let E0 =Mn(R). Consider the sequence

R ι−→Mn(R)⊕Mn(R)
π−→ R

with ι(a) = (aIn, aIn), where In is the identity matrix in Mn(R) and π(X,Y ) =
tr(X − Y ) is the trace of X − Y . The module ker(π) is generated by the union of
the following sets:

• {(0,Ei,j) ∈Mn(R)⊕Mn(R) : 1 ≤ i, j ≤ n, i ̸= j},
• {(Ei,j , 0) ∈Mn(R)⊕Mn(R) : 1 ≤ i, j ≤ n, i ̸= j},
• {(Ei,i,E1,1) ∈Mn(R)⊕Mn(R) : 1 ≤ i ≤ n}, and
• {(0,Ei,i −E1,1) ∈Mn(R)⊕Mn(R) : 2 ≤ i ≤ n}.
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On the other hand, im(ι) is generated by

(In, In) = (E1,1,E1,1) +
∑n

i=2(Ei,i,E1,1) +
∑n

i=2(0,Ei,i −E1,1).

This shows that E1 = ker(π)/ im(ι) is a free module. Finally, let E2 =Mn(R) and
E3 = R.

3.1.2. The maps. We next define the maps d1, d2, d3, ϵ, as follows:

• ϵ : E0 → In−2(M), N 7→ tr(M∗N),

• d1 : E1 → E0, (N1, N2) 7→ N1M −MN2,

• d2 : E2 → E1, N 7→ (MN,NM), and
• d3 : E3 → E2, x 7→ xM∗,

where for (N1, N2) ∈Mn(R)⊕Mn(R), we denote by (N1, N2) its image under the
canonical surjectionMn(R)⊕Mn(R) ↠ E1.

Proposition 8. Let M be a matrix of homogeneous linear forms in R. Assume
In−2(M) is Cohen-Macaulay. With

E0, E1, E2, E3, ϵ, d1, d2, d3.
as defined above, the sequence

0→ E3
d3−→ E2

d2−→ E1
d1−→ E0

ϵ−→ In−2(M)→ 0

is a free resolution of In−2(M).

Proof. Since I = In−2(M) is Cohen-Macaulay, there exists an I-regular sequence
of length equal to the Krull dimension of I in R. By [FSS13, Thm. 10] and Propo-
sition 7, the Krull dimension of I is exactly 4. Then, the result follows from [BV88,
Thm. 2.26]. □

3.2. The case r = n − 2. We give generators for the first syzygy module in the
case r = n− 2, assuming In−2(M) is Cohen-Macaulay.

Theorem 9. Let M = (mi,j) be a matrix of homogeneous linear forms in R. Sup-
pose that In−2(M) is Cohen-Macaulay. Then the first syzygy module of Fn−2(M)
is generated by:

(i)
∑n

k=1(−1)k+jmk,iEk,j for i ̸= j;
(ii)

∑n
k=1(−1)i+kmj,kEi,k for i ̸= j;

(iii)
∑n

k=1((−1)i+kmk,iEk,i − (−1)k+1m1,kE1,k) for 1 ≤ i ≤ n− 1;
(iv)

∑n
k=1((−1)j+kmj,kEj,k − (−1)k+1m1,kE1,k) for 2 ≤ j ≤ n.

Furthermore, the syzygies described by Items (i), (ii), (iii) and (iv) form a minimal
generating set for the Syz(Fn−2(M)) of size 2n2 − 2.

Proof. By Proposition 3, ker(ϵ) is the first syzygy module of the cofactors of M . By
Proposition 8, since In−2(M) is Cohen-Macaulay, the Gulliksen-Neg̊ard complex is
exact and ker(ϵ) = im(d1). The image im(d1) is generated by the images of gener-
ators for E1 under d1. Thus, by Section 3.1, the first syzygy module of Fn−2(M) is
generated by the following syzygies. For i ̸= j,

(1) d1

(
(Ei,j , 0)

)
= Ei,jM =

n∑
k=1

mk,iEk,j .

Similarly, for i ̸= j,

(2) d1

(
(0,Ei,j)

)
= MEi,j =

n∑
k=1

mj,kEi,k.
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For any 1 ≤ i ≤ n− 1,

(3) d1

(
(Ei,i,E1,1)

)
= Ei,iM −ME1,1 =

n∑
k=1

mk,iEk,i −m1,kE1,k.

Finally, for any 2 ≤ j ≤ n,

(4) d1

(
(0,Ej,j −E1,1)

)
= MEj,j −ME1,1 =

n∑
k=1

mj,kEj,k −m1,kE1,k.

Since the generators for In−2(M) taken in the Gulliksen-Neg̊ard complex are the
cofactors of M rather than the (n − 1)-minors of M , we obtain Items (i) to (iv)
by pulling back each of Eqs. (1) to (4), respectively under the isomorphism M∗

i,j ∈
In−2(M) 7→ (−1)(i+j)M∗

i,j ∈ In−2(M). There are n2 − n syzygies described by
each of Item (i) and Item (ii), and n − 1 syzygies described by each of Item (iii)
and Item (iv). This gives a total of 2n2 − 2 syzygies.

We conclude by proving that these 2n2 − 2 syzygies form a minimal generating
set for Syz(Fn−2(M)). Let m1, . . . ,m2n2−2 ∈ Syz(Fn−2(M)) denote the generating
set given by Item (i), Item (ii), Item (iii), Item (iv). Suppose that for some 1 ≤
i ≤ 2n2 − 2, mi is generated by {m1, . . . ,m2n2−2} ∖ {mi}. Then we can write∑

j ̸=i ajmj = mi for some aj ∈ R. Since the mj are all homogeneous, this forces

aj ∈ k for all j ̸= i. Subsequently, aj ∈ im(d2) ∩ k2n2−2 for all j ̸= i.

Letting ai = 1, and taking N ∈ d−1
2 ((a1, . . . , a2n2−2)), we find that MN,NM ∈

Mn(R) are matrices with entries in k. For 1 ≤ j ≤ n, the entries of the j-th row
of MN are members of the ideal generated by the j-th row of M . The entries of
M are homogeneous linear forms, so the only constant element contained in this
ideal 0. Similarly, for 1 ≤ j ≤ n, the entries of the j-th row of NM are members of
the ideal generated by the j-th column of M , and an analogous argument applies.
Thus, aj = 0 for each 1 ≤ j ≤ 2n2 − 2. □

One can easily construct an algorithm, named SyzCorankOne, which, given a
matrix M , computes the syzygies described in Theorem 9.

Remark 10. In both Theorem 9 and SyzCorankOne(M) we require that Fn−2(M)
is Cohen-Macaulay. This is necessary, as without it the Gulliksen-Neg̊ard complex
need not be exact and subsequently we cannot compute Syz(Fn−2(M)) using its
differential maps. However, since ϵ is defined by ϵ(N) = tr(M∗N), where M∗ =
(M∗

i,j) is the matrix of cofactors of M , a matrix N = (Ni,j) ∈ Mn(R) is in the
kernel of ϵ if and only if

∑
1≤i,j≤n Nj,iM

∗
i,j = 0. That is, ker(ϵ) corresponds to

Syz(Fn−2(M)) even if In−2(M) is not Cohen-Macaulay. Moreover, even if In−2(M)
is not Cohen-Macaulay, the Gulliksen-Neg̊ard complex is still a complex. Thus, in
all cases, im(d1) ⊆ ker ϵ, so if In−2(M) is not Cohen-Macaulay, Theorem 9 describes
(and subsequently SyzCorankOne(M) computes) a generating set for a submodule
of Syz(Fn−2(M)).

Remark 11. If the entries of M are not homogeneous, then assuming In−2(M) is
Cohen-Macaulay, the syzygies computed by Theorem 9 still generate Syz(Fn−2(M)),
but they need no longer be a minimal generating set.

3.3. The general case.

Theorem 12. Let n ≥ 3 and let 1 ≤ r ≤ n − 2. Then there exists a nonempty

Zariski open set U ⊆ Akn2

k such that for all a ∈ U , taking M = φa(A ), the
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following holds: Let M ′ be the set of submatrices of size (r + 2) × (r + 2) of M .
For each matrix N ∈M ′, let S(N) be the set of syzygies of Fr(N) computed using
Theorem 9. Then Syz(Fr(M)) =

⋃
N∈M ′ S(N).

Proof. Let U be an n × n matrix of indeterminates over k. Let U ′ be the set
of (r + 2) × (r + 2) submatrices of U . For each N ∈ U ′, let S(N ) be the
set of syzygies of Fr(N ) computed using Theorem 9. By [Kur89, Thm. 5.1],
Syz(Fr(A )) =

⋃
N ∈U ′ S(N ). Thus, by [FSS13, Lem. 3], there is a nonempty

Zariski open subset U1 ⊆ Akn2

k such that for all a ∈ U1, the syzygies between the
(r+1)-minors of φa(A ) are those between the (r+1)-minors of each (r+2)×(r+2)
submatrix of φa(A ). We denote by A ′ the set of (r + 2)× (r + 2) submatrices of
A . By Proposition 7, for each submatrix N of A ′, there exists a nonempty Zariski

open subset UN ⊆ Ak·n2

k such that for all a ∈ UN , the ideal generated by the
(r + 1)-minors of N is Cohen-Macaulay, so that Theorem 9 applies. Thus, taking
U =

⋂
N∈A ′ UN ∩ U1, the result follows. □

Consequently, using SyzCorankOne(M) we obtain an algorithm SyzGen(M, r)
which constructs a set of generators for Syz(Fr(M)).

Remark 13. From Theorems 9 and 12, neither SyzGen(M, r) nor SyzCorankOne(M)
require any arithmetic k-operations.

Again in the statement of Theorem 12 we require that Ir(M) is Cohen-Macaulay.
This is necessary in order for Syz(Ir(M)) to be computed via the syzygies of (r+1)-
minors of (r+2)×(r+2) submatrices. If Ir(M) is not Cohen-Macaulay, Theorem 12
gives a (possibly proper) subset of a generating set for Syz(Ir(M)).

Finally, we require that the entries of M be homogeneous linear forms. Once
again, the theorem holds if the entries are affine, as long as Ir(M) satisfies the
stated genericity assumption.

Note that no claim is made as to the minimality of the generating set computed in
Theorem 12. However, one can show that when the entries of M are homogeneous,
a minimal generating set can be extracted from the set computed in Theorem 12
by throwing away any element which differs by multiplication by −1 from another
element. This need no longer hold if the entries are affine.

4. Determinantal matrix-F5 algorithm

In this section, we use the syzygies returned by SyzGen(M, r) to avoid reductions
to zero when running Algorithm 1. As explained below, the following result will be
instrumental.

Proposition 14 ([EF16, Lem. 6.4]). Let (f1, . . . , fℓ) = F ⊆ Rt be a system of
homogeneous module elements. Let D ∈ Z≥0, and let G = GD−mini{deg(fi)} be
the elements up to degree D −mini{deg(fi)} of a POT-Gröbner basis for Syz(F ).
Then,

(1) If τei ∈ ltpot(G), the row of Mdeg(τ)+deg(fi),i with signature (i, τ) is a linear
combination of rows with smaller signature.

(2) If a row with signature (i, τ) of Mdeg(τ)+deg(fi),i reduces to zero, then τei is in
the module generated by ltpot(G).

Proof. Item 1 is simply Proposition 4. We turn to Item 2. Fix mini{deg(fi)} ≤
d ≤ D and 1 ≤ i ≤ ℓ. Suppose that the row with signature (i, τ) reduces to zero
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in M̄deg(τ)+deg(fi),i. Then there is a linear dependency s1f1 + · · ·+ sℓfℓ = 0. This
corresponds to a syzygy s = s1e1+ · · ·+ sℓeℓ ∈ Syz(F ) with ltpot(s) = τei. Finally,

deg(si) = d− deg(fi) ≤ D − deg(fi) ≤ D −min
i
{deg(fi)}.

for each 1 ≤ i ≤ ℓ. Thus ltpot(s) = τei is in ⟨ltpot(G)⟩. □

Using Proposition 14, in order to remove all reductions to zero when running
Algorithm 1 to compute a D-Gröbner basis for a graded module F ⊆ Rt, we
compute the leading terms of the elements up to degree D − minf∈F {deg f} of a
Gröbner basis for Syz(F ). We can compute them by running Algorithm 1 on a set
of chosen generators for Syz(F ) itself, with the appropriate degree bound given by
Proposition 14. However, if Syz2(F ) ̸= {0}, then Proposition 14 once again shows
that reductions to zero will be encountered when computing the elements up to
degree D −minf∈F {deg f} of a Gröbner basis for Syz(F ).

When r = n− 2, the Gulliksen-Neg̊ard complex allows us to explicitly compute
generating sets for all higher syzygy modules. Thus, we can avoid all reductions to
zero when computing a D-Gröbner basis for Fr(M). When r < n− 2, we can only
compute a generating set for the first syzygy module Syz(Fr(M)), and thus cannot
efficiently remove all reductions to zero.

Now we are ready to describe an algorithm which exploits the syzygies computed
by SyzGen(M, r) to compute a grevlex Gröbner basis for Fr(M) without reductions
to zero in degree r + 2.

Algorithm 2 Determinantal-Matrix-F5(M, r,D)

Input: An integer 1 ≤ r ≤ n− 2, an n×n matrix M of homogeneous linear forms
over k in (n− r)2 variables such that Ir(M) is Cohen-Macaulay, and a degree
bound D.

Output: A grevlex D-Gröbner basis for Ir(M).
1: S ← SyzGen(M, r)
2: S′ ← Matrix-F5(S, 1, ∅)
3: G← Matrix-F5(Fr(M), D, S′)
4: return G

Proposition 15. Algorithm 2 terminates and is correct.

Proof. Termination follows from that of SyzGen(M, r) and Algorithm 1. To prove
correctness, we need to show that the set S′ of Line 2 is indeed a set of syzygies
between the elements of Ir(M). By Theorem 12, the set S computed on Line 1 is
a minimal generating set for Syz(Fr(M)). By the construction of this generating
set, given in Theorem 12, each element of S is homogeneous of degree one. Hence,
according to Section 2.3.3, the set S′ consists of the elements of degree one of a
POT-Gröbner basis for Syz(Fr(M)). □

Remark 16. Both the number of rows and the number of columns of the Macaulay
matrix in degree one for the set S on Line 2 of Algorithm 2 is bounded by the
number of rows of the Macaulay matrix for Fr(M) in degree r + 1. Therefore,
asymptotically, the arithmetic cost of Algorithm 2 is bounded by the arithmetic
cost of its final step, computing the Gröbner basis of Fr(M).
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Proposition 17. Let n ≥ 3, let 1 ≤ r ≤ n − 2, let D = r · (n − r) + 1, and let

k = (n− r)2. There exists a nonempty Zariski open set U ⊆ Akn2

k such that for all
a ∈ U , taking M = φa(A ), upon running Algorithm 2 with arguments M, r,D:

(1) a full grevlex Gröbner basis is returned; and

(2) for each 1 ≤ i ≤
(

n
r+1

)2
, the matrix Mr+2,i has full rank.

Proof. By [FSS13, ], there exists a Zariski open subset U1 ⊆ Akn2

k such that the
maximal degree of a polynomial in the reduced grevlex Gröbner basis for Ir(M) is

precisely D. Let U2 be a nonempty Zariski open subset of Akn2

k such that the results
of Theorem 12 hold. Let U = U1 ∩U2. Item 1 follows immediately from the degree
bound given in [FSS13]. We turn to Item 2. By Proposition 14, Item 2, it suffices
to show that the leading terms of the set S′ of Line 2 consists of the elements of
degree at most r+2 of ltpot(Syz(Ir(M))). This is immediate from Theorem 12 and
Section 2.3.3. □

Remark 18. If we do not impose the genericity assumption on Ir(M) Algorithm 2
will still return a D-Gröbner basis for Ir(M), though Mr+2,i need no longer be full

rank for all 1 ≤ i ≤
(

n
r+1

)2
.

If the entries of M are affine, by Remark 13, there are two possibilities. First,
SyzGen(M, r) still returns a generating set for the first syzygy module of Fr(M),
and these may be used in the original F5 algorithm which works on affine input to
avoid reductions to zero. Alternatively, following [CLO15, Ch. 8, § 2, Prop. 7], one
can simply homogenize Fr(M) with respect to a variable h which is taken to be
grevlex smaller than all other variables of R, and specialize h = 1 upon termination
of Algorithm 2.

5. The case r = n− 2

Now, we describe an altered version of the F5 algorithm which computes a
Gröbner basis for Ir(M) when r = n − 2 without any reductions to zero. Note
that Algorithm 2 does not require r < n − 2. Thus, we could simply compute
a Gröbner basis for Ir(M) using Algorithm 2 when r = n − 2. However, only
those reductions to zero arising from syzygies of degree r + 2 will be avoided. By
Proposition 14, any syzygies of degree d > r+ 2 which cannot be generated by the
syzygies of degree r+2 will manifest as reductions to zero in the Macaulay matrices
in degree d.

5.1. Higher syzygy modules. By Proposition 8, the Gulliksen-Neg̊ard complex
is a free resolution of Ir(M) as soon as Ir(M) is Cohen-Macaulay. Thus, the kernels
of its differential maps are precisely the syzygy modules of Ir(M). The map d3 is
defined by d3(x) = xM∗, where M∗ is the matrix of cofactors of M . The third
syzygy module Syz3(Ir(M)) is the image of d3, and is thus free of rank n2 and
principally generated by the entries of M∗.

Proposition 19. Let M be an n × n matrix of homogenoeus linear forms in R.
Suppose In−2(M) is Cohen-Macaulay. In the R-basis for ker(π)/ im(ι) given in
Section 3.1, the second syzygy module Syz2(Fr(M)) is generated by the following
syzygies:
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(i) For 2 ≤ i ≤ n and 1 ≤ j ≤ n− 1,∑
k ̸=j

mk,i(Ek,j , 0) +
∑
k ̸=i

mj,k(0, Ei,k)

+mj,i

(
(Ej,j , E1,1) + (0, Ei,i − E1,1)

)
.

(ii) For 2 ≤ i ≤ n,∑
k ̸=n

mk,i(Ek,n, 0) +
∑
k ̸=i

mn,k(0, Ei,k)

−mn,i

(
n−1∑
j=1

(Ej,j , E1,1) +
n−1∑
j=2

(0, Ej,j − E1,1)

)

(iii) For 1 ≤ j ≤ n− 1,∑
k ̸=j

mk,1(Ek,j , 0) +
∑
k ̸=1

mj,k(0, E1,k) +mj,1(Ej,j , E1,1)

(iv) Finally, ∑
k ̸=n

mk,1(Ek,n, 0) +
∑
k ̸=1

mn,k(0, E1,k)

−mn,1

(
n−1∑
j=1

(Ej,j , E1,1) +
n∑

j=2

(0, Ej,j − E1,1)

)

Proof. The second syzygy module Syz2(Ir(M)) is the image of d2, by Proposition 8.
The map d2 is defined by

d2(N) = (MN,NM).

Taking Ei,j , 1 ≤ i, j ≤ n to be the canonical R-basis forMn(R), a basis for im(d2)

is given by {(MEi,j ,Ei,jM) | 1 ≤ i, j ≤ n}. We can express MEi,j and Ei,jM in
the canonical R-basis forMn(R),

MEi,j = mj,iEj,j +
∑
k ̸=j

mk,iEk,j ; Ei,jM = mj,iEi,i +
∑
k ̸=i

mj,kEi,k.

From this, we express generators for Syz2(Ir(M)) in the R-basis for ker(π)/ im(ι).
Doing so gives precisely Items (i) to (iv). □

Using Proposition 19, one can easily construct an algorithm, which we will call
Syz2GenCorankOne(M) which constructs the set Syz2(Fn−2(M)). We use this al-
gorithm in the next section to design a dedicated F5-type algorithm which performs
no reduction to zero when computing a Gröbner basis of In−2(M) when In−2(M)
is Cohen-Macaulay and k = 4.

Remark 20. Analogous to Remark 18, if In−2(M) is not Cohen-Macaulay, the
Gulliksen-Neg̊ard complex need not be a free resolution of In−2(M), though it is
still a complex. Thus, even if In−2(M) is not Cohen-Macaulay, im(d2) ⊆ ker(d1),
so the syzygies described by Proposition 19 are a subset of a generating set for the
syzygies between the generators for ker ϵ given by Theorem 9.
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5.2. A refined F5 algorithm. We combine Proposition 19, Theorem 9, and
Proposition 14 to give an algorithm which computes a grevlex Gröbner basis for
Fn−2(M) without any reductions to zero, provided In−2(M) is Cohen-Macaulay.
In order to obtain the leading terms of the first syzygy module, of Fn−2(M), we
must know which rows will reduce to zero when echelonizing the Macaulay matrices
associated to the first syzygy module in various degrees. By Proposition 14, the
signatures of these rows are precisely the leading terms of a Gröbner basis for the
second syzygy module in the appropriate degree.

Subsequently, applying Proposition 14 once again, the leading terms of the first
syzygy module in various degrees are precisely the signatures of the rows which
reduce to zero when echelonizing the Macaulay matrices associated to Fn−2(M).

Algorithm 3 Determinantal-Corank-One-Matrix-F5

Input: An integer n ≥ 3, an n × n matrix of generic homogeneous linear forms
over k in 4 variables, and an integer D ≥ n− 1

Output: The elements up to degree D of a grevlex Gröbner basis for In−2(M).
1: S1 ← SyzCorankOne(M)
2: S2 ← Syz2GenCorankOne(M)
3: S′

2 ← Matrix-F5(S2, D − n, ∅)
4: S′

1 ← Matrix-F5(S1, D − n+ 1, S′
2)

5: G← Matrix-F5(Fn−2(M), D, S′
1)

6: return G

Proposition 21. Algorithm 3 terminates and is correct.

Proof. Termination is an easy consequence from the one of SyzCorankOne(M),
Syz2GenCorankOne(M), and Algorithm 1. For correctness, it suffices to show that
the set S′

1 computed on Line 4 is indeed a set of syzygies of the polynomials in
Fn−2(M). This follows from Theorem 9. □

Proposition 22. Let D = 2n− 3. Then there is a nonempty Zariski open subset

U of A4·n2

k such that for all a ∈ U , upon running Algorithm 3 with arguments
φa(In−2(A )), D,

(1) a full grevlex Gröbner basis is returned; and
(2) for each 1 ≤ i ≤ n2 and for each n − 1 ≤ d ≤ 2n − 3, the matrix Md,i is

full rank.

Proof. By [FSS13, Lem. 18], there is a Zariski dense subset U1 of A4·n2

k such that for
all a ∈ U1, the maximal degree of a polynoimal in the reduced grevlex Gröbner basis
of In−2(M) is 2n − 3. By Proposition 7, there is a nonempty Zariski open subset

U2 of A4·n2

k such that for all a ∈ U2, the ideal φa(In−2(A )) is Cohen Macaulay.
Thus, taking U = U1 ∩ U2, we obtain Item 1.

We turn to Item 2. By Proposition 14, Item 2, it suffices to show that the
leading terms of the set S′

1 computed on Line 4 consists of the elements of degree
at most 2n − 3 of ltpot(Syz(In−2(M))). This is immediate from Theorem 9 and
Section 2.3.3. □

6. Complexity in the case r = n− 2

Throughout this section we focus on the dimension zero case. Thus, k = (n −
r)2 = 4. For a homogeneous ideal I ⊆ R, we take HFI(d) to be the Hilbert
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function of I. That is, for an integer d ≥ 0, HFI(d) = dimk Id. Further, we take
HI(t) =

∑
d HFI(d)t

d to be the Hilbert series of I. We refer to [Eis95, 1.9] for
further details.

When r = n − 2, we can use the results of the previous section to give explicit
formulae for the coefficients of the Hilbert series HIr(M)(t). Subsequently, we can
exactly compute the ranks of the Macaulay matrices in each degree computed by the
F5 algorithm, and bound the complexity of computing the reduced grevlex Gröbner
basis of a matrix of generic homogeneous linear forms by that of computing the row
reduction of each of these matrices.

First, note that for any 1 ≤ d ≤ r, both the number of rows and the number of
columns of the Macaulay matrix in degree d for the set S2 (resp. S1) computed by
Algorithm 3 is bounded by the number of rows of the Macaulay matrix in degree
d + 1 (resp. d + r + 1) for the set S1 (resp. Fn−2(M)). Thus, the arithmetic cost
of Algorithm 3 is bounded by the arithmetic cost of the final step, computing the
grevlex Gröbner basis for Fn−2(M).

Proposition 23. There exists a Zariski open set U ⊆ A4·n2

k such that for all a ∈ U ,
the Hilbert series Hφa(Ir(A ))(t) for φa(Ir(A )) is given by:

(5)

2r+1∑
d=r+1

(
n2

(
d− r + 2

3

)
− (2n2 − 2)

(
d− r + 1

3

)
+ n2

(
d− r

3

))
td.

Proof. Let U be as in Proposition 22. If M is a free R-module of rank t, then
the monomials of M of degree d form a basis for the finite-dimensional k-vector
space of homogeneous elements of degree d ofM. Thus, HFM(d) = t·

(
k+d−1
d−1

)
. The

description of each free module in the Gulliksen-Neg̊ard complex given in Section 3.1
gives rise to

rk E0 = #Fn−2(M) =
(

n
n−1

)2
= n2, rk E1 = 2n2 − 2

rk E2 = n2, rk E3 = 1

Thus, by [Eis95, Thm. 1.13], HFIn−2(M)(d) =
∑3

i=0(−1)i HFEi
(d), which equals

n2
(
d−r+2

3

)
− (2n2 − 2)

(
d−r+1

3

)
+ n2

(
d−r
3

)
−
(
d−r−1

3

)
. □

In the following proposition, we take

B =
2r+1∑
d=r+1

n2

(
d− r + 2

3

)
− (2n2 − 2)

(
d− r + 1

3

)
+ n2

(
d− r

3

)
.

Proposition 24. There is a Zariski dense subset U of A4·n2

k such that for all
a ∈ U , the arithmetic cost of computing the reduced grevlex Gröbner basis for
φa(In−2(A )) using Algorithm 3 is in

O
(
Bω−1

(
2r+5

5

))
= O

(
n4(ω−1)

(
2n
3

))
.

Proof. Take U as in Proposition 23. Fix a ∈ U and let M = φa(In−2(A )).
The ideal In−2(M) is homogeneous, so the complexity of computing a grevlex
Gröbner basis for In−2(M) is bounded by the complexity of reducing the interme-
diate Macaulay matrices encountered in the matrix-F5 algorithm. The coefficient
on td in the Hilbert series Eq. (5) gives the rank of the Macaulay matrix of Fr(M)
in degree d. The Macaulay matrices computed in Algorithm 3 have full row rank,
allowing for the use of any echelonization algorithm when computing M̄d,i. Hence,
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the result follows from the complexity of computing the reduced row echelon form
[Sto00, Sec. 2.2] (see also [JPS13, App.A]) and the fact that the number of columns
in the Macaulay matrix in degree 2n − 3, the maximal degree of a polynomial in
the grevlex Gröbner basis of Ir(M), is the number of monomials of degree 2n− 3
in k[x1, . . . , x4]. □

Asymptotically, the bound given in [FSS13, Thm. 20] is in O
(
n5ω+2

)
whereas

that given by Proposition 24 is in O
(
n4ω−1

)
.

7. Experimental results

Here we present some experimental results on numbers of reductions to zero
in our refinements of the F5 algorithm compared to the standard F5 algorithm.
The systems used for these results were obtained by building square matrices of
homogeneous linear forms with random coefficients over k = F65521. This field is
large enough that the genericity assumptions necessary for our results to hold do
so with high probability when taking random coefficients.

All Gröbner basis computations were performed using an implementation of both
standard F5 and our refinements to F5 written in SageMath (see [The22]) using the
FFLAS-FFPACK library (see [gro19]) for the linear algebra subroutines. When
r = n− 2, we compute a full Gröbner basis for Fn−2(M), whereas when r < n− 2,
we only compute a Gröbner basis of Fr(M) up to degree r + 2, as past this degree
our algorithm performs no differently to standard F5.

When r = n − 2, all reductions to zero are avoided and thus all Macaulay
matrices are full rank. By virtue of Proposition 4, if a row of Md,i reduces to zero,
then all multiples of this row in Md′,i for d′ > d reduce to zero as well, and the
standard F5 algorithm avoids these rows. Note however, that there are a significant
number of reductions to zero which do not arise from reductions to zero in lower
degree, as evidenced by the discrepancy between the size of the generating set for
Syz(Fn−2(M)), which is 2n2− 2 (when r = n− 2) and the number of reductions to
zero encountered by the standard F5 algorithm.

Note also that by [FSS13, Cor. 19], the largest degree of a polynomial in the
reduced grevlex Gröbner basis for In−2(M) is 2n−3, which is strictly smaller than
2(r + 1) = 2n − 2. Thus, Proposition 5 is never used when running either the
standard F5 algorithm, or our refined algorithm on In−2(M).

When r < n−2, we avoid all reductions to zero in the Macaulay matrices Mr+2,i

for all 1 ≤ i ≤
(

n
r+1

)2
. As the data in Table 1 shows, this already allows us to avoid

a significant number of reductions to zero. In fact, in all higher corank cases,
over half of the reductions to zero overall appear in degree r + 2. The number of
reductions to zero in degree r+2 (and thus the size of a minimal generating set for
Syz(Ir(M))) appears to be(

n

r + 2

)2(
2(r + 2)(r + 1)

n− r − 1
+ 2r + 2

)
.

From this quantity one could derive a refined estimate of the complexity of Algo-
rithm 2.

Note that generically, in the case r < n − 2, the largest degree of a polynomial
appearing in the reduced grevlex Gröbner basis for Ir(M) is r · (n − r) + 1 again
by [FSS13, Cor. 19]. Thus, in this case, Proposition 5 is used as soon as the degree
exceeds 2(r + 1).
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Finally, we observe that the speedups which can already be achieved using the
results of this paper, within our software framework, increase when n grows and
n− r remains fixed. In the case where n− r = 2 we obtain speedup which are close
to 10. This clearly indicates the potential of these results with respect to practical
computation times.

Table 1. Reductions to zero in standard F5 (there is none in
determinantal-F5) as well as ratio of timings for standard F5 com-
pared to determinantal-F5, when computing a D-Gröbner basis for
the system of (r+ 1)-minors of a generic n× n matrix of homoge-
neous linear forms in k variables over k = F65521.

n r k D Red. to 0
(Std. F5)

(Std. F5)
(Det. F5)

4 2 4 5 56 0.11
5 3 4 7 129 0.08
6 4 4 9 239 0.43
7 5 4 11 414 0.69
8 6 4 13 663 1.46
9 7 4 15 959 1.65
10 8 4 17 1387 2.26
11 9 4 19 1871 3.07
12 10 4 21 2525 3.99
13 11 4 23 3181 4.94
14 12 4 25 4032 6.00
15 13 4 27 4977 6.03
16 14 4 29 6213 7.93
17 15 4 31 7515 7.22
18 16 4 33 8845 7.99
19 17 4 35 10544 8.65
20 18 4 37 12969 10.59
4 1 9 3 160 1.27
5 2 9 4 450 1.77
6 3 9 5 1008 2.04
7 4 9 6 1960 2.16
8 5 9 7 3456 2.40
9 6 9 8 5670 2.50
5 1 16 3 800 1.34
6 2 16 4 3150 1.59
7 3 16 5 9408 1.72
6 1 25 3 2800 1.28
7 2 25 4 14700 1.39
7 1 36 3 7840 1.22
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Gröbner bases of saturation ideals (F4SAT) and colon ideals (Sparse-FGLM-colon).

Working paper, 2022.
[Beu22] W. Beullens. Breaking rainbow takes a weekend on a laptop. In Proceedings

CRYPTO 2022, pages 464–479. Springer, 2022.

[BFS99] J. F. Buss, G. S. Frandsen, and J. O. Shallit. The computational complexity of some
problems of linear algebra. J. Comput. Syst. Sci., 58(3):572–596, 1999.

[BFS15] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of the F5 Gröbner basis
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Appl. Algebra, 139(1):61–88, 1999.

[Fau02] J.-C. Faugère. A new efficient algorithm for computing gröbner bases without re-
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[SS03] M. Safey El Din and É. Schost. Polar varieties and computation of one point in each

connected component of a smooth real algebraic set. In Proceedings ISSAC 2003,
pages 224–231. ACM, 2003.

http://github.com/linbox-team/fflas-ffpack
http://github.com/linbox-team/fflas-ffpack


REFINED F5 ALGORITHMS FOR IDEALS OF MINORS OF SQUARE MATRICES 21
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