SUM OF SQUARES DECOMPOSITIONS OF POLYNOMIALS OVER THEIR GRADIENT IDEALS WITH RATIONAL COEFFICIENTS

VICTOR MAGRON* ${ }^{*}$ MOHAB SAFEY EL DIN ${ }^{\dagger}$, AND TRUNG-HIEU VU ${ }^{\ddagger}$

Abstract

Assessing non-negativity of multivariate polynomials over the reals, through the computation of certificates of non-negativity, is a topical issue in polynomial optimization. This is usually tackled through the computation of sum of squares decompositions which rely on efficient numerical solvers for semi-definite programming.

This method faces two difficulties. The first one is that the certificates obtained this way are approximate and then non-exact. The second one is due to the fact that not all non-negative polynomials are sums of squares.

In this paper, we build on previous works by Parrilo, Nie, Demmel and Sturmfels who introduced certificates of non-negativity modulo gradient ideals. We prove that, actually, such certificates can be obtained exactly, over the rationals if the polynomial under consideration has rational coefficients and we provide exact algorithms to compute them. We analyze the bit complexity of these algorithms and deduce bitsize bounds of such certificates.

Key words. Non-negative polynomial, sum of squares decomposition, gradient ideal, zerodimensional and radical ideal, Gröbner basis, bit complexity

AMS subject classifications. 14P05, 11E25, 13P10

1. Introduction. We denote by \mathbb{Q} (resp. \mathbb{R}) the field of rational (resp. real) numbers and by \boldsymbol{x} the n-tuple of variables $\left(x_{1}, \ldots, x_{n}\right)$. Let \mathbb{K} be a field, we denote by $\mathbb{K}[\boldsymbol{x}]$ the polynomial ring with base field \mathbb{K} and variables \boldsymbol{x}. For a polynomial f of degree d in $\mathbb{Q}[\boldsymbol{x}]$, we consider the problem of computing certificates of non-negativity of f over \mathbb{R}^{n}. This is a central issue in polynomial optimization as minimizing a polynomial f boils down to maximizing λ such that $f-\lambda$ is non-negative over \mathbb{R}^{n}. This hard non-negativity constraint can be replaced by a more tractable one that is $f-\lambda$ is a sum of squares (SOS) of polynomials.

Prior works. Computing certificates of non-negativity is usually done by decomposing f as an SOS of polynomials or rational fractions. It is well-known that all non-negative univariate polynomials with real coefficients can be decomposed as a sum of squares of polynomials. Also, any non-negative univariate polynomial f with rational coefficients can be decomposed as a weighted sum of squares with rational coefficients, i.e. $f=\sum_{i} c_{i} s_{i}^{2}$ where s_{i} has rational coefficients and c_{i} is a positive rational [21, 34]. Further, by SOS decompositions with rational coefficients, we mean weighted SOS decompositions with rational coefficients. Several algorithms already compute such SOS decomposition with rational coefficients of non-negative univariate polynomials with rational coefficients (see [42, 10]) and bit complexity and bitsize estimates are given in [27].

The multivariate case is more difficult. Following the seminal works by [22, 31], hierarchies of semi-definite programs yield approximations of weighted SOS decompositions of positive polynomials. Several heuristics have been proposed to lift such approximations to exact SOS decompositions of the input polynomial, starting with [33] and followed by [18, 19, 20]. Note that algorithms in [18, 20] allow us to compute SOS decompositions on some degenerate examples or compute SOS of rational frac-

[^0]tions. Complexity issues are studied through the prism of perturbation-compensation techniques to compute SOS decompositions in the interior of the SOS cone [24, 25, 26].

Still, computing exact certificates of non-negativity is especially hard because of the two following reasons. The first one is that there exist non-negative polynomials which are not SOS, for example, Motzkin's polynomial and Robinson's polynomial. Moreover, Blekherman proved in [8] that there are many more non-negative polynomials in $\mathbb{R}[\boldsymbol{x}]$ than SOS polynomials. The second one is that, even if a given polynomial with rational coefficients is SOS, there is no guarantee that there exists an SOS decomposition involving rational coefficients, as established in [41]. Still, general algorithms for computing such exact certificates by means of sums of squares decompositions have been designed, either for computing sums of squares decompositions with rational coefficients [40] or with algebraic numbers by computing exact solutions to semi-definite programs [17] but suffer from a high complexity.

Alternative certificates of non-negativity, for instance, SAGE/SONC polynomials $[28,44]$ can also be used but they face similar issues to the ones met by SOS techniques when it comes with generality.

Deciding non-negativity over an arbitrary semi-algebraic set of a polynomial $f \in$ $\mathbb{Q}[\boldsymbol{x}]$ can be done exactly using computer algebra algorithms. The best complexities for such a decision procedure are achieved by algorithms making effective the socalled critical point method [16, 6], further practical developments in [2, 3, 4, 38] and their applications in polynomial optimization in [14, 15, 5]. Note that, even if these algorithms are exact (i.e. their results are exact provided that no bug has been encountered), they do not provide a certificate assessing non-negativity which can be checked a posteriori since these are root-finding algorithms. Their complexities are exponential in the dimension of the ambient space as they reduce the input problem to computing finitely many critical points of some well-chosen maps, hence considering gradient ideals.

Hence, all in all, such gradient ideals can be used to reduce the dimension of the set over which certifying non-negativity can be done. Under some assumptions, this idea is translated in [32] to an algorithm assessing the non-negativity of a given $f \in$ $\mathbb{R}[\boldsymbol{x}]$. Precisely, assuming the gradient ideal $\mathcal{I}_{\text {grad }}(f)$ (which is the set of all algebraic combinations of the partial derivatives of f) is zero-dimensional ${ }^{1}$ and radical ${ }^{2}$, and that f reaches its infimum over \mathbb{R}^{n}, this algorithm computes an SOS decomposition of f in the quotient ring $\mathbb{R}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ (or, in other words, an SOS decomposition of f modulo $\mathcal{I}_{\text {grad }}(f)$), i.e., f is written as

$$
c_{1} s_{1}^{2}+\cdots+c_{k} s_{k}^{2}+\sum_{i=1}^{n} q_{i} \frac{\partial f}{\partial x_{i}}
$$

where the s_{i} 's and the q_{i} 's lie in $\mathbb{R}[\boldsymbol{x}]$ and the c_{i} 's are positive in \mathbb{R}. A similar result slightly relaxing the above assumptions is given in [30]. Note that when f has coefficients in \mathbb{Q}, there is no given guarantee that an SOS decomposition of it in $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ will have rational coefficients too (i.e., the s_{i} 's and the q_{i} 's have coefficients in \mathbb{Q} and the c_{i} 's lie in $\left.\mathbb{Q}\right)$.

Contributions. We build on the results of [32, 30], to investigate this issue when $f \in \mathbb{Q}[\boldsymbol{x}]$. We assume in the whole paper that the gradient ideal associated to f is radical and zero-dimensional and that f reaches its infimum over \mathbb{R}^{n}. We summarize our contributions as follows.

[^1]Existence of certificates of non-negativity with rational certificates. Under the above assumptions, we prove that f is non-negative over \mathbb{R}^{n} if and only if f is an SOS of polynomials with rational coefficients over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ (see Theorem 3.1). The new ingredients beyond those used in [32, 30] are a reduction to the univariate case thanks to the so-called shape position (see Lemma 2.2) as well as bit complexity analysis of algorithms providing zero-dimensional rational parametrization of the gradient variety (Corollary 2.3) and algorithms providing weighted rational SOS decompositions of univariate rational polynomials (Theorems 17 and 24 from [27]). Interestingly, Theorem 3.1 can be applied to Robinson's polynomial [36], which is not an SOS of polynomials (see Example 3.5), as well as Scheiderer's polynomial [41], which is an SOS of polynomials with real coefficients but not an SOS of polynomials with rational coefficients (see Example 3.6).

The next problem we tackle is to design algorithms computing such certificates of non-negativity, estimate their bit complexity.

To measure the bitsize of a polynomial with rational coefficients, we will use its height, defined as follows. The bitsize of an integer b is denoted by $h t(b):=$ $\left\lfloor\log _{2}(|b|)\right\rfloor+1$ with $h t(0):=1$, where $\log _{2}$ is the logarithm in base 2 . Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ with $b \neq 0$ and $\operatorname{gcd}(a, b)=1$, we define $h t\left(\frac{a}{b}\right)=\max \{h t(a), h t(b)\}$. For a non-zero polynomial f with rational coefficients, the bitsize $h t(f)$ is defined as the maximum bitsize of the non-zero coefficients of f. For two mappings $p, q: \mathbb{N}^{m} \rightarrow \mathbb{R}$, the expression " $p(v)=O(q(v))$ " means that there exists $b \in \mathbb{N}$ such that $p(v) \leq b q(v)$, for all $v \in \mathbb{N}^{m}$. We use the notation $p(v)=\widetilde{O}(q(v))$ in order to indicate that $p(v)=$ $O\left(q(v) \log ^{k} q(v)\right)$ for some $k \in \mathbb{N}$.

Algorithms and bit complexity estimates. From the proof of Theorem 3.1, we derive an algorithm (Algorithm 3.1), named sosgradientshape, to compute an SOS decomposition of polynomials modulo the gradient ideal of f. This algorithm can certify non-negativity of polynomials which cannot be tackled with a direct SOS approach. We also investigate the bit complexity of sosgradientshape. We prove that, given as input an n-variate polynomial $f \in \mathbb{Q}[\boldsymbol{x}]$ of degree d with maximum bitsize of its coefficients τ, sosgradientshape uses

$$
\widetilde{O}\left((\tau+n+d)^{2} d^{6 n}+(\tau+n+d) d^{6 n+4}\right)
$$

boolean operations. This is better than the complexity estimates given in [26, Theorem 12], where the reported number of boolean operations is: $\widetilde{O}\left(\tau^{2}(4 d+2)^{15 n+6}\right)$.

We design a variant of Algorithm sosgradientshape, named sosgradient, and which, on input $f \in \mathbb{Q}[\boldsymbol{x}]$ as above, decomposes it as a sum of rational fractions modulo the gradient ideal associated to f. We prove that this variant uses

$$
\widetilde{O}\left((\tau+n+d) d^{4 n+4}\right)
$$

boolean operations, hence with better complexity than Algorithm sosgradientshape.
Both algorithms have been implemented using the MAPLE computer algebra system. We report on practical experiments showing that they can already assess the non-negativity of numerous polynomials which are out of reach of, e.g., hybrid methods computing sums of squares decompositions such as [24]. We emphasize that such complexity estimates are of interest to the polynomial optimization community as they give degree bounds for the SOS multipliers required when using the variant of the so-called "Moment-SOS hierarchy" (also called Lasserre's hierarchy [22]) to minimize polynomials over their gradient ideals [30]. Indeed, such degree bounds translate
to convergence rates for the underlying optimization scheme and allow one to estimate the overall computational cost complexity. More importantly, our practical experiments show that the algorithm sosgradient can assess the non-negativity of multivariate polynomials of a large set of examples which are out of reach of the state of the art (when both the number of variables and degree increase).

Structure of the paper. In the next section, we recall basic notions and fundamental results used in the paper. In Section 3, we prove the existence of an SOS of polynomials modulo the gradient ideal of f, introduce Algorithm sosgradientshape and analyze its bit complexity. The results for decomposing f as an SOS of rational fractions modulo the gradient ideal are presented in Section 4. Practical experiments are given in the last section.
2. Preliminaries. This section recalls basic notions and results from algebraic geometry, computational commutative algebra, and complexity analysis. Further details can be found in [11].

Let \mathbb{K} be a field. An additive subgroup \mathcal{I} of $\mathbb{K}[\boldsymbol{x}]$ is said to be an ideal of $\mathbb{K}[\boldsymbol{x}]$ if $h g \in \mathcal{I}$ for any $h \in \mathcal{I}$ and $g \in \mathbb{K}[\boldsymbol{x}]$. Given g_{1}, \ldots, g_{r} in $\mathbb{K}[\boldsymbol{x}]$, we denote by $\left\langle g_{1}, \ldots, g_{r}\right\rangle$ the ideal generated by g_{1}, \ldots, g_{r}. If \mathcal{I} is an ideal of $\mathbb{K}[\boldsymbol{x}]$ then, according to Hilbert's basis theorem (see, e.g., [11, Theorem 4]), there exist $g_{1}, \ldots, g_{r} \in \mathbb{K}[\boldsymbol{x}]$ such that $\mathcal{I}=\left\langle g_{1}, \ldots, g_{r}\right\rangle$.

Let \mathcal{I} be an ideal of $\mathbb{R}[\boldsymbol{x}]$. The algebraic variety associated to \mathcal{I} is defined as

$$
V(\mathcal{I}):=\left\{x \in \mathbb{C}^{n}: \forall g \in \mathcal{I}, g(\boldsymbol{x})=0\right\} .
$$

The real algebraic variety associated to \mathcal{I} is $V^{\mathbb{R}}(\mathcal{I})=V(\mathcal{I}) \cap \mathbb{R}^{n}$. Recall that the ideal \mathcal{I} is zero-dimensional if the cardinality $\# V(\mathcal{I})$ is finite, and that \mathcal{I} is radical if

$$
g^{k} \in \mathcal{I} \text { for some } k \in \mathbb{N} \Longrightarrow g \in \mathcal{I}
$$

We emphasize that $V(\mathcal{I})$ being finite (i.e. \mathcal{I} being zero-dimensional) is a stronger assumption than $V^{\mathbb{R}}(\mathcal{I})$ being finite. It is worth noting here that if \mathcal{I} is zero-dimensional then we can get a bound on the expected cardinality of $V(\mathcal{I})$ from Bezout's theorem.

Let f be a polynomial in $\mathbb{R}[\boldsymbol{x}]$. Recall that the gradient ideal $\mathcal{I}_{\text {grad }}(f)$ of f is the ideal generated by all partial derivatives of f in $\mathbb{R}[\boldsymbol{x}]$, i.e.,

$$
\mathcal{I}_{\text {grad }}(f):=\left\langle\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle
$$

The (resp. real) gradient variety associated to f is respectively the (resp. real) algebraic variety associated to $\mathcal{I}_{\text {grad }}(f)$. We denote them respectively by $V_{\text {grad }}(f)$ and $V_{g r a d}^{\mathbb{R}}(f)$. Let \mathbb{K} be a real field contained in \mathbb{R}. One says that f is a (weighted) sum of squares (SOS) of polynomials in $\mathbb{K}[\boldsymbol{x}]$ if there exist polynomials q_{1}, \ldots, q_{s} in $\mathbb{K}[\boldsymbol{x}]$ and positive numbers c_{1}, \ldots, c_{s} in \mathbb{K} such that $f=\sum_{j=1}^{s} c_{j} q_{j}^{2}$. Furthermore, f is an SOS of polynomials over the quotient ring $\mathbb{K}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ if there exists $g \in \mathcal{I}_{\text {grad }}(f)$ such that $f-g$ is SOS in $\mathbb{K}[\boldsymbol{x}]$, i.e., f can be decomposed as follows:

$$
f=\sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=1}^{n} \phi_{i} \frac{\partial f}{\partial x_{i}},
$$

for some polynomials $q_{1}, \ldots, q_{s}, \phi_{1}, \ldots, \phi_{s}$ in $\mathbb{K}[\boldsymbol{x}]$ and positive numbers c_{1}, \ldots, c_{s} in \mathbb{K}.

Clearly, if f is SOS over $\mathbb{R}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ then f is non-negative over $V_{\text {grad }}^{\mathbb{R}}(f)$. We recall below [32, Theorem 1].

Let f be a polynomial in $\mathbb{R}[\boldsymbol{x}]$. Suppose that the gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is zerodimensional and radical. Then, f is non-negative over $V_{g r a d}^{\mathbb{R}}(f)$ if and only if f is $S O S$ over the quotient ring $\mathbb{R}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$.

We now recall useful results in the univariate case. It is well-known that $f \in \mathbb{R}[t]$ is non-negative over \mathbb{R} if and only if f is SOS. This property holds also for polynomials with coefficients in a subfield \mathbb{K} of \mathbb{R}. More precisely, we have the following theorem:

Theorem 2.1 ([21, 34]). Let \mathbb{K} be a subfield of \mathbb{R} and $f \in \mathbb{K}[t]$. Then, f is nonnegative over \mathbb{R} if and only if f admits a weighted SOS decomposition of polynomials in $\mathbb{K}[t]$, i.e., there exists a positive integer s, non-negative numbers $c_{1}, \ldots, c_{s} \in \mathbb{K}$ and polynomials $g_{1}, \ldots, g_{s} \in \mathbb{K}[t]$, such that $f=\sum_{j=1}^{s} c_{j} g_{j}^{2}$.

Let \mathbb{K} be a field and $<$ be a monomial ordering on $\mathbb{K}[\boldsymbol{x}]$ and $\mathcal{I} \neq\{0\}$ be an ideal. We denote by $L T_{<}(\mathcal{I})$ the set of all leading terms $L T_{<}(g)$ of $g \in \mathcal{I}$, and by $\left\langle L T_{<}(\mathcal{I})\right\rangle$ the ideal generated by the elements of $L T_{<}(\mathcal{I})$.

A subset $G=\left\{g_{1}, \ldots, g_{r}\right\}$ of \mathcal{I} is said to be a Gröbner basis of \mathcal{I} w.r.t. some monomial order $<$ if

$$
\left\langle L T_{<}\left(g_{1}\right), \ldots, L T_{<}\left(g_{r}\right)\right\rangle=\left\langle L T_{<}(\mathcal{I})\right\rangle
$$

Note that every ideal in $\mathbb{K}[\boldsymbol{x}]$ has a Gröbner basis. A Gröbner basis G is reduced if the two following conditions hold: the leading coefficient of g is 1 , for all $g \in G$; there are no monomials of g lying in $\left\langle L T_{<}(G) \backslash\{g\}\right\rangle$. Every ideal \mathcal{I} has a unique reduced Gröbner basis. We refer the reader to [11] for more details. Further, when the monomial order $<$ is clear from the context, we omit as a subscript in the above notation.

Assume that \mathcal{I} is a zero-dimensional and radical ideal in $\mathbb{Q}[\boldsymbol{x}]$ and that G is the reduced Gröbner basis of \mathcal{I} with respect to the lexicographical order $x_{1}<_{\text {lex }} \cdots<_{\text {lex }}$ x_{n}. One says that \mathcal{I} is in shape position if G has the following form:

$$
\begin{equation*}
G=\left[w, x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right] \tag{2.1}
\end{equation*}
$$

where w, v_{2}, \ldots, v_{n} are polynomials in $\mathbb{K}\left[x_{1}\right]$ and $\operatorname{deg} w=\# V(\mathcal{I})$.
The following lemma, named Shape Lemma, gives us a criteria for the shape position of an ideal.

Lemma 2.2 (Shape Lemma, [13]). Let \mathcal{I} be a zero-dimensional and radical ideal and $<_{\text {lex }}$ be a lexicographic monomial order in $\mathbb{Q}[\boldsymbol{x}]$. If $V(\mathcal{I})$ is the union of δ points in \mathbb{C}^{n} with distinct x_{1}-coordinates, then \mathcal{I} is in shape position as in (2.1), where v_{2}, \ldots, v_{n} are polynomials in $\mathbb{Q}\left[x_{1}\right]$ of degrees at most $\delta-1$.

Let V be a zero-dimensional algebraic subset of $\mathbb{C}^{n}, \delta:=\# V$. A zero-dimensional rational parametrization $\mathcal{Q}=\left(\left(w, \kappa_{1}, \ldots, \kappa_{n}\right), \lambda\right)$ of V consists in $n+1$ univariate polynomials $w, \kappa_{1}, \ldots, \kappa_{n}$ in $\mathbb{Q}[t]$, where w^{\prime} is the derivative of w, such that w is monic and square-free, $\operatorname{deg} \kappa_{i}<\operatorname{deg} w$, for $i=1, \ldots, n$, and a \mathbb{Q}-linear form λ in n variables satisfying $\lambda\left(\kappa_{1}, \ldots, \kappa_{n}\right)=t w^{\prime} \bmod w$, such that

$$
V=\left\{\left(\frac{\kappa_{1}(t)}{w^{\prime}(t)}, \ldots, \frac{\kappa_{n}(t)}{w^{\prime}(t)}\right): w(t)=0\right\} .
$$

The condition on the linear form λ states that the roots of w are precisely the values taken by λ on V, and that λ separates V, i.e., $\lambda(x) \neq \lambda(y)$ for any distinct pair x, y in V.

Let f be in $\mathbb{Q}[\boldsymbol{x}]$ of degree d and bitsize τ. Assume that $V_{\text {grad }}(f)$ is finite. By applying [39, Corollary 2] to the system of partial derivatives, we obtain the following corollary (Corollary 2.3) which states that there exists an algorithm computing a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$ and provides bit complexity estimates for when applying the algorithm in [39] to gradient ideals. The proof of Corollary 2.3 is straightforward from [39, Corollary 2] and is then postponed to Appendix A.

Corollary 2.3. Assume that $V_{\text {grad }}(f)$ is finite. There exists an algorithm that takes f as in input, and that produces one of the following outputs:
a) either a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$;
b) or a zero-dimensional rational parametrization of degree less than that of $V_{\text {grad }}(f)$;
c) or fails.

In any case, the algorithm uses

$$
\begin{equation*}
\widetilde{O}\left(n^{2}(d+\tau) d^{2 n+1}\binom{n+d}{d}\right) \tag{2.2}
\end{equation*}
$$

boolean operations. Moreover, the polynomials $w, \kappa_{1}, \ldots, \kappa_{n}$ involved in the zerodimensional rational parametrization output have degree at most $(d-1)^{n}$ and bitsize $\widetilde{O}\left((d+\tau+n)(d-1)^{n}\right)$.

Assume that $\mathcal{Q}=\left(\left(w, \kappa_{1}, \ldots, \kappa_{n}\right), x_{1}\right)$ is a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$ given by the algorithm from Corollary 2.3. The following lemma (Lemma 2.4) and its proof point out the explicit shape position of $\mathcal{I}_{\text {grad }}(f)$. Moreover, the degree and the bit complexity of the involved polynomials are estimated.

LEMMA 2.4. There exist polynomials w, v_{2}, \ldots, v_{n} in $\mathbb{Q}\left[x_{1}\right]$ satisfying $\operatorname{deg} v_{i}<$ $\operatorname{deg} w$, for $i=2, \ldots, n$, such that $\mathcal{I}_{\text {grad }}(f)=\left\langle w, x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right\rangle$. Furthermore, to compute w, v_{2}, \ldots, v_{n}, we use

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d)^{2} d^{6 n}\right) \tag{2.3}
\end{equation*}
$$

boolean operations. Their degrees are at most $(d-1)^{n}$ and their maximum bitsizes are bounded from above by $\widetilde{O}\left((\tau+n+d) d^{3 n}\right)$.

Proof. Here we give only the proof of the degree estimate. The proof of the bit complexity is routine but rather technical and postponed to Appendix B.

Because w is square-free and w^{\prime} is the derivative of w, one sees that the gcd of w and w^{\prime} is 1. From the extended Euclidean algorithm [43, Algorithm 3.14], there exist two Bézout coefficients of w and w^{\prime}, namely a, b in $\mathbb{Q}\left[x_{1}\right]$, such that $a w+b w^{\prime}=1$. For $i=2, \ldots, n$, we see that $w^{\prime} x_{i}(t)=\kappa_{i}(t)$ for any t satisfying $w(t)=0$. As $\operatorname{deg} \kappa_{i} \leq \operatorname{deg} w$ and the linear form $\lambda=x_{1}$ separates V, we have $w^{\prime} x_{i}=\kappa_{i}$. This yields $b w^{\prime} x_{i}=b \kappa_{i}$. Since $b w^{\prime}=1-a w$, we observe that $x_{i}-a w x_{i}=b \kappa_{i}$ and, hence, $x_{i}=b \kappa_{i} \bmod w$. By denoting $v_{i}:=b \kappa_{i} \bmod w$, we obtain w, v_{2}, \ldots, v_{n} which are the desired polynomials.

The two following lemmas establish the bit complexity of Euclidean division algorithm and the extended Euclidean algorithm for univariate polynomials over \mathbb{Z} which will be used later on (in Proposition 3.11) to investigate the bit complexity of our algorithms.

Lemma 2.5. Let a, b be polynomials in $\mathbb{Z}[t]$, with $\operatorname{deg} a=d \geq m=\operatorname{deg} b$, and τ an upper bound of $h t(a)$ and $h t(b)$. To compute the quotient q and the remainder r of the
division of a by b, we use the Euclidean division algorithm [43, Algorithm 2.5]. Then, this algorithm uses $O\left(m \tau(d-m)^{2}\right)$ boolean operations. Furthermore, both bitsizes of q and r are bounded from above by $O(\tau(d-m))$.

Again, the proof of Lemma 2.5 is routine but rather technical. We postpone it to Appendix C.

Denote by $\mathbb{Q}\left(x_{1}\right)$ the field of rational fractions in variable x_{1} with coefficients in \mathbb{Q}. With the lexicographic monomial order $x_{2}<\cdots<x_{n}$, we consider the standard (multivariate) division [11, Ch. 2, Sec 3.] of $g \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right]$ by the list $\left[x_{2}-\right.$ $\left.\frac{a_{2}}{a_{0}}, \ldots, x_{n}-\frac{a_{n}}{a_{0}}\right]$, with $a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{Q}\left[x_{1}\right]$. To compute the quotients $\phi_{2}, \ldots, \phi_{n} \in$ $\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$ and remainder $r \in \mathbb{Q}\left(x_{1}\right)$ such that $g=\sum_{i=2}^{n} \phi_{i}\left(x_{i}-\frac{a_{i}}{a_{0}}\right)+r$, we iterate classical univariate divisions by $x_{i}-\frac{a_{i}}{a_{0}}$ for $2 \leq i \leq n$ considering them as univariate in x_{i} so that we eliminate step by step the variables x_{2}, \ldots, x_{n} in g. The details of this algorithm, which we name Eliminate, are given in Appendix D (Algorithm D.1). The inputs of Eliminate are $g, a_{0}, a_{2}, \ldots, a_{n}$ and the output is the list $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and the remainder r.

The bit complexity of Eliminate is given in the following lemma whose proof (which is quite routine) is given in Appendix D.

Lemma 2.6. Assume that $g \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right]$ has degree d in x_{2}, \ldots, x_{n} and bitsize τ_{g}, and that the polynomials $a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{Q}\left[x_{1}\right]$ have bitsizes at most τ_{a}. Then, Algorithm Eliminate runs in

$$
\widetilde{O}\left(n \tau_{g}+n^{2} d \tau_{a}\right)
$$

boolean operations and the bitsizes of the outputs $\phi_{2}, \ldots, \phi_{n}$ are in $\widetilde{O}\left(\tau_{g}+n d \tau_{a}\right)$.

3. SOS of polynomials modulo gradient ideals.

3.1. The existence of an SOS decomposition over the rationals. The main result of this section is stated below.

Theorem 3.1. Let $f \in \mathbb{Q}[\boldsymbol{x}]$ such that the following conditions hold:
a) The infimum $f^{\star}=\inf \left\{f(x): x \in \mathbb{R}^{n}\right\}$ is attained.
b) The gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical.

Then, f is non-negative over \mathbb{R}^{n} if and only if f is an $S O S$ of polynomials over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$.

Proof. Suppose that f is non-negative over \mathbb{R}^{n} and $\# V_{\text {grad }}(f)=\delta$. We prove that f is an SOS of polynomials over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$. We consider the two following cases:

Case 1. Distinct points in $V_{\text {grad }}(f)$ have distinct x_{1}-coordinates. Consider the lexicographic monomial order $x_{1}<x_{2}<\cdots<x_{n}$ on $\mathbb{Q}[\boldsymbol{x}]$. Since the gradient ideal is zero-dimensional and radical, according to the Shape Lemma (Lemma 2.2), the reduced Gröbner basis of $\mathcal{I}_{\text {grad }}(f)$ has the following form:

$$
\begin{equation*}
\left[w, x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right] \tag{3.1}
\end{equation*}
$$

where v_{2}, \ldots, v_{n} are polynomials in $\mathbb{Q}\left[x_{1}\right]$ of degree at most $\delta-1$. We denote

$$
\begin{equation*}
h\left(x_{1}\right):=f\left(x_{1}, v_{2}, \ldots, v_{n}\right), \tag{3.2}
\end{equation*}
$$

where x_{i} is replaced by v_{i} in f for $i=2, \ldots, n$. With the order $<$, we divide $f-h$ by the system in (3.1) by using the division algorithm in [11, Ch. 2, Sec 3.]. Then, there
exist $\phi_{1}, \ldots, \phi_{n}$ in $\mathbb{Q}[\boldsymbol{x}]$, and r in $\mathbb{Q}\left[x_{1}\right]$ such that

$$
\begin{equation*}
f-h=\phi_{1} w+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right)+r \tag{3.3}
\end{equation*}
$$

with $\operatorname{deg} r<\delta$. Let x be in $V_{\text {grad }}(f)$. From (3.2) and (3.3), one sees that $f(x)=h(x)$. Hence, $f-h$ vanishes on $V_{\text {grad }}(f)$. Clearly, the value of $\phi_{1} w+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right)$ is zero on $V_{\text {grad }}(f)$. This implies that r also vanishes on the image set $\pi\left(V_{\text {grad }}(f)\right)$, where $\pi\left(x_{1}, \ldots, x_{n}\right)=x_{1}$. Since distinct points in $V_{\text {grad }}(f)$ have distinct x_{1}-coordinates, it holds that $\# \pi\left(V_{\text {grad }}(f)\right)=\# V_{\text {grad }}(f)=\delta$. As $\operatorname{deg} r<\delta$, we conclude that $r \equiv 0$. Hence, from (3.3), we obtain the following representation:

$$
\begin{equation*}
f=h+\phi_{1} w+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right) \tag{3.4}
\end{equation*}
$$

The set $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{2}=v_{2}, \ldots, x_{n}=v_{n}\right\}$ defines a curve which is parametrized by x_{1}. Recall that f is non-negative over \mathbb{R}^{n}. Hence f is non-negative over this curve. Since f takes the same values over this curve as h takes over x_{1} when x_{1} ranges in \mathbb{R}, one can conclude that the univariate polynomial h is also non-negative over \mathbb{R}. According to the results on SOS decompositions of univariate polynomials with rational coefficients in Theorem 2.1, h is a sum of s squares in $\mathbb{Q}\left[x_{1}\right]$, i.e., there exist $q_{1}, \ldots, q_{s} \in \mathbb{Q}\left[x_{1}\right]$ and c_{1}, \ldots, c_{s} in \mathbb{Q}_{+}such that $h=c_{1} q_{1}^{2}+\cdots+c_{s} q_{s}^{2}$. Therefore, from (3.4), we assert that f is an SOS of polynomials over $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$.

Case 2. There are two distinct points in $V_{\text {grad }}(f)$ such that their x_{1} 's-coordinates are equal. According to [37, Lemma 2.1], there is $j \in\{1, \ldots,(n-1) \delta(\delta-1) / 2\}$ such that the linear function $u:=x_{1}+j x_{2}+\cdots+j^{n-1} x_{n}$ separates $V_{g r a d}(f)$, i.e., $u(x) \neq u(y)$ for any distinct points x, y in $V_{\text {grad }}(f)$. We consider the change of variables $\boldsymbol{y}=T \boldsymbol{x}$, where

$$
T=\left[\begin{array}{ccccc}
1 & j & j^{2} & \cdots & j^{n-1} \tag{3.5}\\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

We see that T is an invertible matrix. Then we obtain a polynomial $g(\boldsymbol{y})=f\left(T^{-1} \boldsymbol{y}\right)$ in variables $y_{1}, y_{2}, \ldots, y_{n}$ having the following property: the infimum $g^{\star}=\inf \{g(y)$: $\left.y \in \mathbb{R}^{n}\right\}$ is attained. Because of the chain rule $\nabla g=\nabla f \circ T^{-1}$, we have

$$
V_{\text {grad }}(g)=\left\{y \in \mathbb{C}^{n}: y=T x, x \in V_{\text {grad }}(f)\right\}
$$

Thus, the gradient ideal $\mathcal{I}_{\text {grad }}(g)$ is zero-dimensional and radical. Moreover, since $y_{1}=u(\boldsymbol{x})$ separates $V_{\text {grad }}(f)$, distinct points in $V_{\text {grad }}(g)$ have distinct y_{1}-coordinates. We observe that $g \in \mathbb{Q}[\boldsymbol{y}]$ is non-negative and satisfies the conditions of the theorem; Case 1 happens to $V_{\text {grad }}(g)$ as well. Hence, there exists an SOS decomposition of g modulo $\mathcal{I}_{\text {grad }}(g)$

$$
\begin{equation*}
g(\boldsymbol{y})=\sum_{j=1}^{s} c_{j} \bar{q}_{j}^{2}(\boldsymbol{y})+\sum_{i=1}^{n} \bar{\phi}_{i}(\boldsymbol{y}) \frac{\partial g}{\partial y_{i}} \tag{3.6}
\end{equation*}
$$

where $\bar{q}_{1}, \ldots, \bar{q}_{s}, \bar{\phi}_{1}, \ldots, \bar{\phi}_{n} \in \mathbb{Q}[\boldsymbol{y}]$ and $c_{1}, \ldots, c_{s} \in \mathbb{Q}_{+}$. In (3.6), we replace \boldsymbol{y} by $T \boldsymbol{x}$ and $\frac{\partial g}{\partial y_{i}}$ by $\frac{\partial f}{\partial x_{i}} \circ T^{-1}$, we obtain a decomposition of f as follows:

$$
\begin{equation*}
f(\boldsymbol{x})=g(T \boldsymbol{x})=\sum_{j=1}^{s} c_{j} \bar{q}_{j}^{2}(T \boldsymbol{x})+\sum_{i=1}^{n} \bar{\phi}_{i}(T \boldsymbol{x}) \frac{\partial f}{\partial x_{i}} \circ T^{-1} \tag{3.7}
\end{equation*}
$$

Because of $\left(\frac{\partial f}{\partial x_{i}} \circ T^{-1}\right)(T x)=\frac{\partial f}{\partial x_{i}}(x)$, (3.7) is an SOS decomposition of f modulo $\mathcal{I}_{\text {grad }}(f)$ of f.

We now prove the reverse conclusion. Suppose that f is SOS over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$, i.e., f can be decomposed as follows:

$$
\begin{equation*}
f=\sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=1}^{n} \phi_{i} \frac{\partial f}{\partial x_{i}}, \tag{3.8}
\end{equation*}
$$

for some polynomials $q_{1}, \ldots, q_{s}, \phi_{1}, \ldots, \phi_{n} \in \mathbb{Q}[\boldsymbol{x}]$, and c_{1}, \ldots, c_{s} in \mathbb{Q}_{+}. Let $x^{\star} \in \mathbb{R}^{n}$ be such that $f\left(x^{\star}\right)=f^{\star}$. Then x^{\star} is a critical point of f over \mathbb{R}^{n}, i.e., x^{\star} belongs to the variety $V_{\text {grad }}(f)$; thus, we have

$$
\sum_{i=1}^{n} \phi_{i}\left(x^{\star}\right) \frac{\partial f}{\partial x_{i}}\left(x^{\star}\right)=0
$$

From (3.8), we see that $f\left(x^{\star}\right)=\sum_{j=1}^{s} c_{j} q_{j}^{2}\left(x^{\star}\right)$ and so this value is non-negative. By assumption, for all x in $\mathbb{R}^{n}, f(x) \geq f\left(x^{\star}\right)$. Hence, f is non-negative over \mathbb{R}^{n}.

Remark 3.2. Assume that Q is a real field and R is the real closure of Q . All arguments in the proof of Theorem 3.1 can be applied for f in $\mathrm{Q}[\boldsymbol{x}]$. Hence, the conclusion of Theorem 3.1 holds for the case $\mathrm{Q}[\boldsymbol{x}]$, i.e., f is non-negative over R^{n} if and only if f is an SOS of polynomials over the quotient ring $\mathrm{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}(f)$ provided that the two following conditions hold: the infimum $f^{\star}=\inf \left\{f(x): x \in \mathrm{R}^{n}\right\}$ is attained; the gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical.

Remark 3.3. In the proof of Theorem 3.1, one can see that $f-h$ vanishes not only on $V_{\text {grad }}(f)$ but also on the variety defined by $\left\langle x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right\rangle$. Hence, ϕ_{1} in (3.4) is zero and (3.4) becomes $f=c_{1} q_{1}^{2}+\cdots+c_{s} q_{s}^{2}+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right)$.

Remark 3.4. Note that if f does not attain its infimum, it could be SOS modulo the gradient ideal but fail to be nonnegative, as it may be negative at points where the gradient does not vanish. This is illustrated by the example $f=x^{2}+(x y-1)^{2}-\frac{1}{2}$ whose gradient ideal is generated by x, y. Hence, f is $1 / 2$ modulo its gradient ideal while it can have negative values (e.g. along the sequence of points $\left(\frac{1}{2^{k}}, 2^{k}\right)$ for $k \geq 1$). So the condition a) in Theorem 3.1 is used only to prove the reverse conclusion. Therefore, even without this condition, the following assertion still holds: if $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical and f is non-negative over \mathbb{R}^{n}, then f is SOS modulo $\mathcal{I}_{\text {grad }}(f)$.

Theorem 3.1 provides certificates of non-negativity for polynomials in $\mathbb{Q}[\boldsymbol{x}]$ which satisfy its assumptions and which are not SOS of polynomials with real (or rational) coefficients. We illustrate this with two examples.

Example 3.5. We recall a polynomial of Robinson [36] that is non-negative but cannot be represented as an SOS of polynomials,

$$
\bar{f}_{R}=x_{1}^{6}+x_{2}^{6}+x_{3}^{6}-x_{1}^{4} x_{2}^{2}-x_{1}^{4} x_{3}^{2}-x_{2}^{4} x_{1}^{2}-x_{2}^{4} x_{3}^{2}-x_{3}^{4} x_{1}^{2}-x_{3}^{4} x_{2}^{2}+3 x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

By substituting the third variable x_{3} by 1 in \bar{f}_{R}, we get the following non-negative polynomial:

$$
f_{R}=x_{1}^{6}+x_{2}^{6}-x_{1}^{4} x_{2}^{2}+3 x_{1}^{2} x_{2}^{2}-x_{1}^{2} x_{2}^{4}-x_{1}^{4}-x_{2}^{4}-x_{1}^{2}-x_{2}^{2}+1
$$

Because \bar{f}_{R} is the homogenization of f_{R}, f_{R} cannot be represented as an SOS of polynomials [29, Proposition 1.2.4]. The gradient ideal $\mathcal{I}_{\text {grad }}\left(f_{R}\right)$ is zero-dimensional and radical. Therefore, Theorem 3.1 tells us that f_{R} is an SOS of polynomials over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}\left(f_{R}\right)$.

Example 3.6. In [41], Scheiderer introduced the following homogeneous polynomial:

$$
\bar{f}_{S}=x_{1}^{4}+x_{1} x_{2}^{3}+x_{2}^{4}-3 x_{1}^{2} x_{2} x_{3}-4 x_{1} x_{2}^{2} x_{3}+2 x_{1}^{2} x_{3}^{2}+x_{1} x_{3}^{3}+x_{2} x_{3}^{3}+x_{3}^{4}
$$

that can be decomposed as an SOS of polynomials with algebraic coefficients but cannot be decomposed as an SOS of polynomials with rational coefficients. By replacing the third variable x_{3} by -1 , we obtain the non-negative polynomial

$$
f_{S}=x_{1}^{4}+x_{1} x_{2}^{3}+x_{2}^{4}+3 x_{1}^{2} x_{2}+4 x_{1} x_{2}^{2}+2 x_{1}^{2}-x_{1}-x_{2}+1 .
$$

Note that the conclusion in [29, Proposition 1.2.4] holds for polynomials with rational coefficients, i.e., $g \in \mathbb{Q}[\boldsymbol{x}]$ is SOS in $\mathbb{Q}[\boldsymbol{x}]$ if and only if its homogenization is in $\mathbb{Q}[\boldsymbol{x}]$. Hence, the polynomial f_{S} is also SOS with algebraic coefficients but not SOS with rational ones. The gradient ideal $\mathcal{I}_{\text {grad }}\left(f_{S}\right)$ satisfies the zero-dimensional and radical condition. Hence, according to Theorem 3.1, f_{S} is an SOS of polynomials over the quotient ring $\mathbb{Q}[\boldsymbol{x}] / \mathcal{I}_{\text {grad }}\left(f_{S}\right)$.

An explicit SOS decomposition of f_{S} will be given in the next section.
3.2. Description of the algorithm. Based on the proof of Theorem 3.1, we design an algorithm to compute an SOS decomposition of polynomials modulo the gradient ideal of a non-negative polynomial with rational coefficients.

The input of sosgradientshape is a non-negative polynomial $f \in \mathbb{Q}[\boldsymbol{x}]$ whose gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical and satisfies the Shape Lemma assumption, i.e., all points in $V_{g r a d}(f)$ have distinct x_{1}-coordinates. Our software implementation first checks that the gradient ideal is zero-dimensional and radical, and returns an error if the assumption is not satisfied. To do so, we rely on the procedures IsZeroDimensional and IsRadical from the Maple package PolynomialIdeals. These are all based on Gröbner bases computations (see e.g. [11]).

The output includes the cardinality $\delta=\# V_{\text {grad }}(f)$, the lists of polynomials and numbers

$$
\left[w, v_{2}, \ldots, v_{n}\right],\left[q_{1}, \ldots, q_{s}\right],\left[\phi_{2}, \ldots, \phi_{n}\right] \subset \mathbb{Q}[\boldsymbol{x}], \text { and }\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}
$$

satisfying the relation

$$
f=\sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right)
$$

In Step 1, we compute the reduced Gröbner basis G for $\mathcal{I}_{\text {grad }}(f)$ by relying on a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$ mentioned in Lemma 2.4. In Step 2, we compute the quotients $\phi_{2}, \ldots, \phi_{n}$ and the remainder r of the division of f by G. In Step 3, we compute a rational weighted SOS decomposition of the non-negative univariate polynomial h by using Algorithm univsos1 or Algorithm univsos2 described in [27, Fig. 1] or [27, Fig. 2], respectively.

ALGORITHM 3.1 Computing SOS of polynomials modulo the gradient ideal
sosgradientshape $:=\operatorname{proc}(f)$
Input: $f \in \mathbb{Q}[\boldsymbol{x}]$ non-negative over \mathbb{R}^{n} such that $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical and all points in $V_{\text {grad }}(f)$ have distinct x_{1}-coordinates
Output: δ in $\mathbb{N},\left[q_{1}, \ldots, q_{s}\right],\left[w, v_{2}, \ldots, v_{n}\right] \subset \mathbb{Q}\left[x_{1}\right],\left[\phi_{2}, \ldots, \phi_{n}\right] \subset \mathbb{Q}[\boldsymbol{x}]$, and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$satisfying

$$
\begin{equation*}
f=\sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right) . \tag{3.9}
\end{equation*}
$$

1: Compute the reduced Gröbner basis $G=\left[w, x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right]$ of $\mathcal{I}_{\text {grad }}(f)$, with the lexicographical ordering $x_{1}<x_{2}<\cdots<x_{n}$, and $\delta=\operatorname{deg} w$
2: Compute the quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and remainder h of the division of f by G by performing Eliminate $\left(f, 1, v_{2}, \ldots, v_{n}\right)$
3: Compute a rational weighted SOS decomposition $h=c_{1} q_{1}^{2}+\cdots+c_{s} q_{s}^{2}$
4: Return $\delta,\left[q_{1}, \ldots, q_{s}\right],\left[\phi_{2}, \ldots, \phi_{n}\right],\left[w, v_{2}, \ldots, v_{n}\right]$, and $\left[c_{1}, \ldots, c_{s}\right]$

Remark 3.7. Suppose that the Shape Lemma assumption does not hold for $\mathcal{I}_{\text {grad }}(f)$, i.e., there are two distinct points in $V_{\text {grad }}(f)$ such that their x_{1} 's-coordinates are equal. As mentioned in the proof of Theorem 3.1, we can find an invertible matrix T given by (3.5), change of variables $\boldsymbol{y}=T \boldsymbol{x}$, and assign $g(\boldsymbol{y}):=f\left(T^{-1} \boldsymbol{y}\right)$. Here, we have $y_{1}=x_{1}+j x_{2}+\cdots+j^{n-1} x_{n}$ for some $j>0$ and $y_{i}=x_{i}$ for $i=2, \ldots, n$. We get a new non-negative polynomial in n new variables with rational coefficients $g(\boldsymbol{y})$ whose gradient ideal satisfies the Shape Lemma assumption. Now we can apply Algorithm sosgradientshape for $g(\boldsymbol{y})$ and obtain the output: the number $\bar{\delta}$, two lists $\left[\bar{q}_{1}, \ldots, \bar{q}_{s}\right],\left[\bar{w}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right]$ of polynomials in $\mathbb{Q}\left[y_{1}\right]$, a list $\left[\bar{\phi}_{1}, \ldots, \bar{\phi}_{n}\right]$ of polynomials in $\mathbb{Q}[\boldsymbol{y}]$, and a list $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$. Since $\# V_{\text {grad }}(f)=\# V_{\text {grad }}(g)$, one has $\bar{\delta}=\delta$. The new polynomial g can be decomposed as follows:

$$
g(\boldsymbol{y})=\sum_{j=1}^{s} c_{j} \bar{q}_{j}^{2}\left(y_{1}\right)+\bar{\phi}_{1}(\boldsymbol{y}) \bar{w}\left(y_{1}\right)+\sum_{i=2}^{n} \bar{\phi}_{i}(\boldsymbol{y})\left(y_{i}-\bar{v}_{i}\left(y_{1}\right)\right) .
$$

Hence, f can be decomposed as:

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{j=1}^{s} c_{j} \bar{q}_{j}^{2}(u(\boldsymbol{x}))+\bar{\phi}_{1}(T \boldsymbol{x}) \bar{w}(u(\boldsymbol{x}))+\sum_{i=2}^{n} \bar{\phi}_{i}(T \boldsymbol{x})\left(x_{i}-\bar{v}_{i}(u(\boldsymbol{x}))\right), \tag{3.10}
\end{equation*}
$$

where $u(\boldsymbol{x})=x_{1}+j x_{2}+\cdots+j^{n-1} x_{n}$. Clearly, $\left[w(u), x_{2}-\bar{v}_{2}(u), \ldots, x_{n}-\bar{v}_{n}(u)\right]$ is also a basis for $V_{\text {grad }}(f)$. Hence, (3.10) provides us an SOS decomposition of f modulo the gradient ideal of f.

Theorem 3.8. Let f be a non-negative polynomial in $\mathbb{Q}[\boldsymbol{x}]$. Suppose that f is non-negative over \mathbb{R}^{n}, $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical, and all points in $V_{\text {grad }}(f)$ have distinct x_{1}-coordinates. On input f, Algorithm sosgradientshape terminates and computes an SOS decomposition of f modulo $\mathcal{I}_{\text {grad }}(f)$ with rational coefficients.

Proof. Assume that $f \in \mathbb{Q}[\boldsymbol{x}]$ is non-negative over \mathbb{R}^{n} and its gradient ideal is zerodimensional and radical. Here, we use the lexicographic monomial order $x_{1}<x_{2}<$
$\cdots<x_{n}$. Because the Shape Lemma assumption holds, the reduced Gröbner basis of $\mathcal{I}_{\text {grad }}(f)$ in Step 1 has the form $G=\left[w, x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right]$, and can be computed by using a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$ as in Lemma 2.4. In Step 2, we compute the quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and the remainder r of the division of f by G by performing $\operatorname{Eliminate}\left(f, 1, v_{2}, \ldots, v_{n}\right)$ (as in Algorithm D.1). Here, we see that r coincides with h, where $h=f\left(x_{1}, v_{2}, \ldots, x_{n}\right)$ as in the proof of Theorem 3.1, because of

$$
r=f-\sum_{i=2}^{n} \phi_{i}\left(x_{i}-v_{i}\right)=h
$$

In Step 3, the univariate polynomial h is non-negative with rational coefficients, so by using univsos1 or univsos2 [27], we can compute an SOS decomposition of $h=c_{1} q_{1}^{2}+\cdots+c_{s} q_{s}^{2}$. Hence, according to the proof of Theorem 3.1, we get (3.9) which is an SOS decomposition modulo the gradient ideal of f.

To illustrate how the algorithm works, we consider the following simple example.
Example 3.9. Consider the polynomial $f\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{1} x_{2}+x_{2}^{2}+10$. This polynomial is non-negative over \mathbb{R}^{n}. Firstly, the gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is given by $\mathcal{I}_{\text {grad }}(f)=\left\langle 8 x_{1}^{3}+2 x_{2}, 2 x_{1}+2 x_{2}\right\rangle$ which is zero-dimensional and radical. We compute the reduced Gröbner basis of $\mathcal{I}_{\text {grad }}(f)$, namely $\left\langle x_{1}^{3}-\frac{1}{4} x_{1}, x_{2}+x_{1}\right\rangle$, here $v_{2}\left(x_{1}\right)=-x_{1}$, with $\delta=\operatorname{deg}\left(x_{1}^{3}-\frac{1}{4} x_{1}\right)=3=\# V_{\text {grad }}(f)$. Secondly, with the order $x_{1}<x_{2}$, the quotients of the division of f by the Gröbner basis are $\phi_{1}=0$ and $\phi_{2}=x_{1}+x_{2}$, and the remainder is given by $h\left(x_{1}\right)=f\left(x_{1}, v_{2}\right)=2 x_{1}^{4}-x_{1}^{2}+10$. Thirdly, by using Algorithm univsos2 in [27], one gets an SOS decomposition of $h=\frac{1}{2} x_{1}^{4}+\frac{3}{2}\left(x_{1}^{2}-\frac{5}{2}\right)^{2}+\frac{13}{2} x_{1}^{2}+\frac{5}{8}$. Finally, we obtain the following SOS decomposition of f modulo its gradient ideal:

$$
f=\frac{1}{2} x_{1}^{4}+\frac{3}{2}\left(x_{1}^{2}-\frac{5}{2}\right)^{2}+\frac{13}{2} x_{1}^{2}+\frac{5}{8}+\left(x_{1}+x_{2}\right) \times\left(x_{2}+x_{1}\right)
$$

3.3. Bit complexity analysis. This subsection investigates the bit complexity of sosgradientshape. Assume that d and τ are respectively the degree and an upper bound of the bitsize of the coefficients of $f \in \mathbb{Q}[\boldsymbol{x}]$. We provide estimates for the bitsizes of polynomials in the output of sosgradientshape (f) as well as for the number of boolean operations required to execute it.

We use Algorithm univsos1 in [27, Fig. 1] or Algorithm univsos2 in [27, Fig. 2] to compute an SOS decomposition of the non-negative univariate polynomial h. The corresponding bit complexities are given as follows:

Proposition 3.10. Let v_{2}, \ldots, v_{n} be as in Lemma 2.4 and $h\left(x_{1}\right)=f\left(x_{1}, v_{2}, \ldots, v_{n}\right)$. To compute an SOS decomposition of h, Algorithm univsos1 and Algorithm univsos2 run in

$$
\begin{equation*}
\widetilde{O}\left(\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2}(\tau+n+d) d^{3 n+1}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d) d^{6 n+4}\right) \tag{3.12}
\end{equation*}
$$

boolean operations, respectively.
Proof. Let $\tau_{v}=\max _{i}\left\{h t\left(v_{i}\right)\right\}$. Lemma 2.4 tells us that the bitsize of τ_{v} is bounded from above by $\widetilde{O}\left((\tau+n+d) d^{3 n}\right)$, and that the polynomials w, v_{2}, \ldots, v_{n} have degree
at most $(d-1)^{n}$. Since $\operatorname{deg} f=d$ and $h\left(x_{1}\right)=f\left(x_{1}, v_{2}, \ldots, v_{n}\right)$, the degree of h is at most $d(d-1)^{n}$.

Let β be the minimum common denominator of all non-zero coefficients of h. Computing an SOS decomposition of h boils down to computing an SOS decomposition of βh. In particular, the execution time of univsos1 (resp., univsos2) on h is the same as for βh. Now we estimate the bitsize of the polynomial $\beta h \in \mathbb{Z}\left[x_{1}\right]$. By the definition of h, we observe that $h t(h) \leq \tau+d \tau_{v}$. It follows that $h t(\beta h) \leq h t(\beta)+\tau+d \tau_{v}$. By definition we have $h t(\beta) \leq \tau+d \tau_{v}$. This yields

$$
\begin{equation*}
h t(\beta h) \leq 2\left(\tau+d \tau_{v}\right) \tag{3.13}
\end{equation*}
$$

From (3.13) and above results, we obtain the following bitsize estimate for βh :

$$
\widetilde{O}\left(2\left(\tau+d(\tau+n+d) d^{3 n}\right)\right)=\widetilde{O}\left((\tau+n+d) d^{3 n+1}\right)
$$

To compute an SOS decomposition of βh, we rely on univsos1 or univsos2. From [27, Theorem 17], the boolean running time of univsos1 corresponds to the quantity given by (3.11). If we use univsos2 then the number of boolean operations, by applying [27, Theorem 24], will be bounded from above by

$$
\widetilde{O}\left(d^{4}(d-1)^{4 n}+d^{4}(\tau+n+d)(d-1)^{6 n}\right)
$$

which can be further reduced to (3.12).
Proposition 3.11. Let v_{2}, \ldots, v_{n} be as in Proposition 3.10. To compute the list $\phi_{2}, \ldots, \phi_{n}$ in the output of Algorithm sosgradientshape, Algorithm Eliminate runs in $\widetilde{O}\left(n^{2}(\tau+n+d) d^{3 n+1}\right)$ boolean operations and the bitsizes of $\phi_{2}, \ldots, \phi_{n}$ are $\widetilde{O}\left(n(\tau+n+d) d^{3 n+1}\right)$.

Proof. From Lemma 2.4, the polynomial v_{i} has bitsize at most $\widetilde{O}\left((\tau+n+d) d^{3 n}\right)$. We divide f by $\left[x_{2}-v_{2}, \ldots, x_{n}-v_{n}\right]$ while performing Eliminate $\left(f, 1, v_{2}, \ldots, v_{n}\right)$ as in Algorithm D. 1 to obtain the list of quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and the remainder $h=$ $h\left(x_{1}, v_{2}, \ldots, v_{n}\right)$. Applying Lemma 2.6 for this division, we conclude that Algorithm Eliminate runs in $\widetilde{O}\left(n^{2}(\tau+n+d) d^{3 n+1}\right)$ boolean operations, the estimate for the bitsize of ϕ_{i} is $\widetilde{O}\left(n(\tau+n+d) d^{3 n+1}\right)$ as claimed.

We are now ready to analyze the bit complexity of Algorithm 3.1.
ThEOREM 3.12. Let $f \in \mathbb{Q}[\boldsymbol{x}]$ of degree d and let τ be the maximum bitsize of its coefficients. Assume that the two conditions in Theorem 3.1 hold. Then, on input f, Algorithm sosgradientshape runs in

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d)^{2} d^{6 n}+(\tau+n+d) d^{3 n+1}\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2}\right) \tag{3.14}
\end{equation*}
$$

or

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d)^{2} d^{6 n}+(\tau+n+d) d^{6 n+4}\right) \tag{3.15}
\end{equation*}
$$

boolean operations if in Step 3 we use Algorithm univsos1 or Algorithm univsos2, respectively.

Proof. Assume that in Step 3 we use univsos1 to compute an SOS decomposition of h. Then, the number of boolean operations that sosgradientshape uses to compute the SOS decomposition of f is the sum of the four following ones:

1. the number of boolean operations required to compute the zero-dimensional rational parametrization \mathcal{Q} of $V_{\text {grad }}(f)$ as in (2.2);
2. the number of boolean operations required to compute $w, v_{2}, \ldots, v_{n} \in \mathbb{Q}\left[x_{1}\right]$, defined in Lemma 2.4 as in (2.3);
3. the number of boolean operations required to compute an SOS decomposition of h by using Algorithm univsos1 as in (3.11);
4. the number of boolean operations required to compute $\phi_{2}, \ldots, \phi_{n}$ in the output of sosgradientshape by using Algorithm Eliminate (mentioned in Proposition 3.11).
This sum equals

$$
\begin{array}{r}
\widetilde{O}\left(n^{2}(d+\tau) d^{2 n+1}\binom{n+d}{d}+(\tau+n+d)^{2} d^{6 n}+(\tau+n+d) d^{3 n+1}\left(\frac{d^{n+1}}{2}\right)^{3 d^{n+1} / 2}+\right. \\
\left.(\tau+n+d) n^{2} d^{3 n+2}\right)
\end{array}
$$

In this sum, the third term is larger than the first and last term for large enough d and n, yielding the estimate (3.14).

If in Step 3 we use univsos2, the number of boolean operations of the algorithm is
$\widetilde{O}\left(n^{2}(d+\tau) d^{2 n+1}\binom{n+d}{d}+(\tau+n+d)^{2} d^{6 n}+(\tau+n+d) d^{6 n+4}+n^{2}(\tau+n+d) d^{3 n+2}\right)$.
Noting that $\binom{n+d}{d} \leq(d+1)^{n} \leq d^{2 n}$ for large enough d and n, we obtain (3.15).
Theorem 3.13. Assume that $f \in \mathbb{Q}[\boldsymbol{x}]$ satisfies the conditions of Theorem 3.12. Let $w, v_{2}, \ldots, v_{n}, h$ be as in Proposition 3.10. Then, the maximum bitsize of the coefficients involved in the SOS decomposition of hobtained by using Algorithm univsos1 and Algorithm univsos2 are bounded from above, respectively, by

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d)\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2} d^{3 n+1}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d) d^{5 n+3}\right) \tag{3.17}
\end{equation*}
$$

Proof. From the proof of Proposition 3.10, the estimates for degree and bitsize of βh are $d(d-1)^{n}$ and $\widetilde{O}\left((\tau+n+d) d^{3 n+1}\right)$, respectively. According to [27, Theorem 16] and [27, Theorem 23], the maximum bitsize of the coefficients involved in the SOS decomposition of βh obtained by using univsos1 and univsos2 are bounded from above by (3.16) and (3.17), respectively.
4. SOS of rational fractions modulo gradient ideals. Artin's Theorem [1] states that if $f \in \mathbb{R}[\boldsymbol{x}]$ is non-negative then there exists a nonzero $g \in \mathbb{R}[\boldsymbol{x}]$ such that $g^{2} f$ is SOS, yielding a decomposition of f as an SOS of rational fractions. In this section, we explain how to decompose $f \in \mathbb{Q}[\boldsymbol{x}]$ as an SOS of rational fractions modulo its gradient ideal. One says that $f \in \mathbb{Q}[\boldsymbol{x}]$ is an $S O S$ of rational fractions in $\mathbb{Q}(\boldsymbol{x})$, where $\mathbb{Q}(\boldsymbol{x})$ is the field of rational fractions in the variable \boldsymbol{x} over \mathbb{Q}, if there exist rational fractions f_{1}, \ldots, f_{s} in $\mathbb{Q}(\boldsymbol{x})$ and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$such that $f=\sum_{j=1}^{s} c_{j} f_{j}^{2}$. Furthermore, f is an SOS of rational fractions over the quotient ring $\mathbb{Q}(\boldsymbol{x}) / \mathcal{I}_{\text {grad }}(f)$ if there exists $g \in \mathcal{I}_{\text {grad }}(f)$ such that $f-g$ is an SOS of rational fractions in $\mathbb{Q}(\boldsymbol{x})$, i.e., f can be decomposed as follows:

$$
f=\sum_{j=1}^{s} c_{j} f_{j}^{2}+\sum_{i=1}^{n} \phi_{i} \frac{\partial f}{\partial x_{i}},
$$

for some rational fractions $f_{1}, \ldots, f_{s}, \phi_{1}, \ldots, \phi_{s}$ in $\mathbb{Q}(\boldsymbol{x})$ and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$.
4.1. The existence of an SOS decomposition over the rationals. Denote by $\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$ the vector space of polynomials in $n-1$ variables $\left(x_{2}, \ldots, x_{n}\right)$ with coefficients in $\mathbb{Q}\left(x_{1}\right)$.

In the following theorem, we prove the existence of an SOS decomposition of rational fractions modulo the gradient ideal for f.

Theorem 4.1. Assume that $f \in \mathbb{Q}[\boldsymbol{x}]$ is a non-negative polynomial of degree d and that $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical. Let $\mathcal{Q}=\left(\left(w, \kappa_{1}, \ldots, \kappa_{n}\right), x_{1}\right)$ be a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$. Then, f can be decomposed as an SOS of rational fractions modulo the gradient ideal, in particular

$$
\begin{equation*}
f=\frac{1}{\left(w^{\prime}\right)^{d}} \sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=1}^{n} \frac{\phi_{i}}{\left(w^{\prime}\right)^{d}}\left(w^{\prime} x_{i}-\kappa_{i}\right) \tag{4.1}
\end{equation*}
$$

for some $q_{1}, \ldots, q_{s} \in \mathbb{Q}\left[x_{1}\right], \phi_{1}, \ldots, \phi_{n} \in \mathbb{Q}[\boldsymbol{x}]$, and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$.
Proof. By substituting $x_{i}=\frac{\kappa_{i}}{w^{\prime}}$ in f, for $i=2, \ldots, n$, one has

$$
\begin{equation*}
f\left(x_{1}, \frac{\kappa_{2}}{w^{\prime}}, \ldots, \frac{\kappa_{n}}{w^{\prime}}\right)=\frac{1}{\left(w^{\prime}\right)^{d}} \bar{h} \tag{4.2}
\end{equation*}
$$

where $\bar{h}\left(x_{1}\right)$ is a univariate polynomial. Since f is non-negative with even degree d, \bar{h} is also non-negative. In addition, the coefficients of $w^{\prime}, \kappa_{1}, \ldots, \kappa_{n}$ and f are rational numbers, so the coefficients of \bar{h} are also rational numbers. Applying Theorem 2.1 for \bar{h}, we conclude that there are $q_{1}, \ldots, q_{s} \in \mathbb{Q}\left[x_{1}\right]$ and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$such that

$$
\begin{equation*}
\bar{h}=\sum_{j=1}^{s} c_{j} q_{j}^{2} \tag{4.3}
\end{equation*}
$$

Next, one considers the division of $\left(w^{\prime}\right)^{d} f-\bar{h}$ by $\left[w^{\prime} x_{1}-\kappa_{1}, \ldots, w^{\prime} x_{n}-\kappa_{n}\right]$ with the lexicographic order $x_{1}<\cdots<x_{n}$. Based on Buchberger's Criterion [9], we can show that this system is a Gröbner basis of the ideal generated by this system w.r.t. the order $<$ in $\mathbb{Q}[\boldsymbol{x}]$. Hence, there exist a (unique) list of quotients $\left[\phi_{1}, \ldots, \phi_{n}\right]$ in $\mathbb{Q}[\boldsymbol{x}]$, and r in $\mathbb{Q}\left[x_{1}\right]$ such that

$$
\begin{equation*}
\left(w^{\prime}\right)^{d} f-\bar{h}=\sum_{i=1}^{n} \phi_{i}\left(w^{\prime} x_{i}-\kappa_{i}\right)+r \tag{4.4}
\end{equation*}
$$

with r of smaller degree than the cardinality δ of $V_{\text {grad }}(f)$. The gradient variety of f can be represented as follows:

$$
V_{\text {grad }}(f)=\left\{\boldsymbol{x} \in \mathbb{C}^{n}: w=0, w^{\prime} x_{1}-\kappa_{1}=\cdots=w^{\prime} x_{n}-\kappa_{n}=0\right\} .
$$

From (4.2), one sees that $\left(w^{\prime}\right)^{d} f-\bar{h}$ vanishes on $V_{\text {grad }}(f)$. With the same arguments as in the proof of Theorem 3.1, we conclude that $r \equiv 0$. Hence, from (4.2), (4.3), and (4.4), we obtain a representation of f as in (4.1).

In Theorem 4.5, we assume that $\mathcal{Q}=\left(\left(w, \kappa_{1}, \ldots, \kappa_{n}\right), x_{1}\right)$ is a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$ which is a generic assumption. In this assumption, the linear form λ is given by $\lambda(\boldsymbol{x})=x_{1}$. If the assumption does not hold, we can change the coordinate system such that the obtained polynomial (with new variables) satisfies the assumption as in Case 2 of the proof of Theorem 3.1.

Remark 4.2. From (4.2), we see that $\operatorname{deg} \bar{h}$ does not exceed $\operatorname{deg}_{x_{1}} f+d \operatorname{deg}\left(w^{\prime}\right)$, where $\operatorname{deg}_{x_{1}} f$ is the degree of f in the variable x_{1} and $\operatorname{deg} w^{\prime}=\operatorname{deg} w-1$. Thus, the degree of the univariate polynomial \bar{h} is at most $d(d-1)^{n}$.
4.2. Algorithm to compute an SOS of rational fractions. From the proof of Theorem 4.1, we design an algorithm named sosgradient to compute the SOS decomposition of rational fractions for f. Algorithm sosgradient is obtained by a modification of Step 1 in sosgradientshape to get a zero-dimensional rational parametrization of the gradient variety of f.

AlGORITHM 4.1 Computing SOS of rational fractions modulo the gradient ideal
sosgradient $:=\operatorname{proc}(f)$
Input: $f \in \mathbb{Q}[\boldsymbol{x}]$ of degree d such that f is non-negative over \mathbb{R}^{n} and $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical
Output: $\left[w, \kappa_{1}, \ldots, \kappa_{n}\right],\left[q_{1}, \ldots, q_{s}\right] \subset \mathbb{Q}\left[x_{1}\right],\left[\phi_{2}, \ldots, \phi_{n}\right] \subset \mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$, and $\left[c_{1}, \ldots, c_{s}\right] \subset \mathbb{Q}_{+}$satisfying

$$
\begin{equation*}
f=\frac{1}{\left(w^{\prime}\right)^{d}} \sum_{j=1}^{s} c_{j} q_{j}^{2}+\sum_{i=1}^{n} \frac{\phi_{i}}{\left(w^{\prime}\right)^{d}}\left(x_{i}-\frac{\kappa_{i}}{w^{\prime}}\right) \tag{4.5}
\end{equation*}
$$

1: Compute a zero-dimensional rational parametrization $\left[w, \kappa_{1}, \ldots, \kappa_{n}\right]$ of $V_{\text {grad }}(f)$
2: Compute the quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and the remainder \bar{h} of the division of $\left(w^{\prime}\right)^{d} f$ by $\left[x_{2}-\frac{\kappa_{2}}{w^{\prime}}, \ldots, x_{n}-\frac{\kappa_{n}}{w^{\prime}}\right]$ by performing Eliminate $\left(\left(w^{\prime}\right)^{d} f, w^{\prime}, \kappa_{2}, \ldots, \kappa_{n}\right)$
3: Compute a rational weighted SOS decomposition of $\bar{h}=c_{1} q_{1}^{2}+\cdots+c_{s} q_{s}^{2}$
4: Return $\left[w, \kappa_{1}, \ldots, \kappa_{n}\right],\left[q_{1}, \ldots, q_{s}\right],\left[\phi_{2}, \ldots, \phi_{n}\right]$, and $\left[c_{1}, \ldots, c_{s}\right.$]
The input of sosgradient is a non-negative polynomial f in $\mathbb{Q}[\boldsymbol{x}]$ whose gradient ideal $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical. The outputs are a zero-dimensional rational parametrization of $V_{\text {grad }}(f)$, a list of polynomials $\left[q_{1}, \ldots, q_{s}\right] \subset \mathbb{Q}\left[x_{1}\right]$, and a list of $\left[\phi_{2}, \ldots, \phi_{n}\right] \subset \mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$ satisfying (4.5). Note that the ϕ_{i} 's in (4.1) and (4.5) are different a multiplier $\frac{1}{w^{\prime}}$. Computing ϕ_{i} 's in (4.5) is more convenient by using Eliminate.

In Step 1, we compute a zero-dimensional rational parametrization $\left[w, \kappa_{1}, \ldots, \kappa_{n}\right.$] of $V_{\text {grad }}(f)$. In Step 2, we compute the quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ of the division of $\left(w^{\prime}\right)^{d} f$ by $\left[x_{2}-\frac{\kappa_{2}}{w^{\prime}}, \ldots, x_{n}-\frac{\kappa_{n}}{w^{\prime}}\right]$ while using Algorithm Eliminate. Note that the remainder of this division coincides with \bar{h} given in (4.2). In Step 3, we compute a rational weighted SOS decomposition of the univariate polynomial \bar{h} by relying on Algorithms univsos1 or univsos2.

The correctness of sosgradient is proved in a similar way as for Algorithm sosgradientshape in Theorem 3.8.

THEOREM 4.3. Suppose that $f \in \mathbb{Q}[\boldsymbol{x}]$ is non-negative over \mathbb{R}^{n} and $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical. On input f, Algorithm sosgradient terminates and the outputs provide us an SOS decomposition of f as in (4.1).
4.3. Bit complexity analysis. We now estimate the bitsizes of polynomials in the output as well as the number of boolean operations required to perform Algorithm sosgradient.

Proposition 4.4. Assume that τ is the maximum bitsize of the coefficients of f in the input of sosgradient. To compute the list $\left[\phi_{2}, \ldots, \phi_{n}\right]$ in the output, Algorithm Eliminate runs in $\widetilde{O}\left(n^{2}(\tau+n+d) d^{n+1}\right)$ boolean operations. Furthermore, the bitsize of ϕ_{i} is $\widetilde{O}\left(n(\tau+n+d) d^{n+1}\right), i=2, \ldots, n$.

Proof. We compute the division of $\left(w^{\prime}\right)^{d} f$ by $\left[x_{2}-\frac{\kappa_{2}}{w^{\prime}}, \ldots, x_{n}-\frac{\kappa_{n}}{w^{\prime}}\right]$ by performing Eliminate $\left(\left(w^{\prime}\right)^{d} f, w^{\prime}, \kappa_{2}, \ldots, \kappa_{n}\right)$. We obtain the list of quotients $\left[\phi_{2}, \ldots, \phi_{n}\right]$ and the remainder \bar{h}. The degree of $\left(w^{\prime}\right)^{d} f$ in x_{2}, \ldots, x_{n} is d, and $h t\left(\left(w^{\prime}\right)^{d} f\right)=$ $\widetilde{O}\left((\tau+n+d) d^{n+1}\right)$. The conclusions are obtained by applying Lemma 2.6 with $h t\left(\kappa_{i}\right)=\widetilde{O}\left((\tau+n+d)(d-1)^{n}\right)$.

Theorem 4.5. Let $f \in \mathbb{Q}[\boldsymbol{x}]$ of degree d and let τ be the maximum bitsize of its coefficients. Assume that f is non-negative over \mathbb{R}^{n} and $\mathcal{I}_{\text {grad }}(f)$ is zero-dimensional and radical. Then, on input f, Algorithm sosgradient uses

$$
\begin{equation*}
\widetilde{O}\left(\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2}(\tau+n+d) d^{n+1}\right) \tag{4.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d) d^{4 n+4}\right) \tag{4.7}
\end{equation*}
$$

boolean operations if in Step 3 we use Algorithm univsos1 or Algorithm univsos2, respectively.

Proof. From Corollary 2.3, the polynomials $w, \kappa_{1}, \ldots, \kappa_{n}$ in the zero-dimensional parametrization of the gradient variety $V_{\text {grad }}(f)$ have degree at most $(d-1)^{n}$ and bitsize $\widetilde{O}\left((\tau+n+d)(d-1)^{n}\right)$. We can see that the degree of the remainder \bar{h} (as defined in (4.2)) in Step 2 of sosgradient is at most $d(d-1)^{n}+d$ and its bitsize is $\widetilde{O}\left((\tau+n+d) d^{n+1}\right)$. To compute an SOS decomposition of \bar{h}, by applying [27, Theorem 17] and [27, Theorem 24], Algorithm univsos1 and Algorithm univsos2 use

$$
\begin{equation*}
\widetilde{O}\left(\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2}(\tau+n+d) d^{n+1}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d) d^{4 n+4}\right) \tag{4.9}
\end{equation*}
$$

boolean operations, respectively.
The estimates (4.6) and (4.7) are obtained from Corollary 2.3, Proposition 4.4, and the estimates (4.8) and (4.9) with the same line of reasoning as in the proof of Theorem 3.12.

Theorem 4.6. Assume that $f \in \mathbb{Q}[\boldsymbol{x}]$ satisfies the conditions of Theorem 4.5. Then, the maximum bitsizes of the coefficients involved in the SOS decomposition of \bar{h}, obtained by using Algorithm univsos1 and Algorithm univsos1, are bounded from above respectively by

$$
\begin{equation*}
\widetilde{O}\left(\left(d^{n+1} / 2\right)^{3 d^{n+1} / 2}(\tau+n+d) d^{n+1}\right) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d) d^{3 n+3}\right) \tag{4.11}
\end{equation*}
$$

Proof. From the proof of Theorem 4.5, the degree of \bar{h} is at most $d(d-1)^{n}$ and the bitsize of \bar{h} is $\widetilde{O}\left((\tau+n+d) d^{n+1}\right)$. The conclusions follow from [27, Theorem 16] and [27, Theorem 23] and the second assertion in Proposition 4.4.

REmARK 4.7. In general, sosgradient is faster than sosgradientshape to certify non-negativity of polynomials with rational coefficients. When relying on univsos2, by comparing the estimates in (3.15) and (4.7), we conclude that the number of boolean operations to run sosgradientshape is about $d^{2 n}$ times larger than the one of sosgradient. The underlying reason is that the maximum bitsizes of w, v_{2}, \ldots, v_{n} are $(d-1)^{2 n}$ times bigger than the ones of $\kappa_{1}, \ldots, \kappa_{n}$ that are obtained by a zerodimensional rational parametrization of the gradient variety.

To finish the section, we present an explicit SOS decomposition for the polynomial f_{S} obtained from Scheiderer's polynomial given in Example 3.6. Here, we rely on sosgradient to get the SOS decomposition.

Example 4.8. We first compute a zero-dimensional rational parametrization \mathcal{Q} of the gradient variety $V_{\text {grad }}\left(f_{S}\right)$:

$$
\begin{aligned}
w & =4 x_{1}^{9}+x_{1}^{6}-16 x_{1}^{5}-4 x_{1}^{3}-4 x_{1}^{2}-1, \\
\kappa_{1} & =15 x_{1}^{7}-32 x_{1}^{6}-9 x_{1}^{4}-36 x_{1}^{3}-6 x_{1}-4, \\
\kappa_{2} & =-3 x_{1}^{6}+64 x_{1}^{5}+24 x_{1}^{3}+28 x_{1}^{2}+9 .
\end{aligned}
$$

In f_{S}, by substituting $x_{2}=\kappa_{2} / w^{\prime}$ as in (4.2), we get the non-negative univariate polynomial $\bar{h}=1679616 x_{1}^{36}+3359232 x_{1}^{34}-559872 x_{1}^{33}-13670208 x_{1}^{32}+11197440 x_{1}^{31}-32799168 x_{1}^{30}+$ $7301664 x_{1}^{29}+40124160 x_{1}^{28}-56581740 x_{1}^{27}+118393488 x_{1}^{26}-29030400 x_{1}^{25}-11429649 x_{1}^{24}+91968984 x_{1}^{23}$ $-162286560 x_{1}^{22}+52664472 x_{1}^{21}-95470992 x_{1}^{20}-51948224 x_{1}^{19}+37314854 x_{1}^{18}-36173624 x_{1}^{17}+$ $103156448 x_{1}^{16}+27660704 x_{1}^{15}+94133752 x_{1}^{14}+56849248 x_{1}^{13}+51186288 x_{1}^{12}+42348048 x_{1}^{11}+20765728 x_{1}^{10}$ $+17391200 x_{1}^{9}+7273168 x_{1}^{8}+4607744 x_{1}^{7}+1946186 x_{1}^{6}+880960 x_{1}^{5}+413632 x_{1}^{4}+86580 x_{1}^{3}+75816 x_{1}^{2}+6561$.

Based on Algorithm Eliminate, we obtain the quotients of the division in Step 3 of sosgradient: $\phi_{1}=0$ and ϕ_{2} given at polsys.lip6.fr/~hieu/phisos.mm.

By using univsos2 to compute an SOS decomposition of \bar{h}, we obtain the list sos given at above link such that $\bar{h}=\sum_{i=1}^{m} \operatorname{sos}[2 i-1] \operatorname{sos}[2 i]^{2}$, where $\boldsymbol{\operatorname { s o s }}[i]$ stands for the i-th entry of sos, m is the half length of sos.

Combining the above results, we obtain an SOS of rational fractions modulo the gradient of f_{S} as in (4.5).
5. Practical experiments. This section is dedicated to showing experimental results obtained by using the algorithms sosgradientshape (Algorithm 3.1 from Section 3) and sosgradient (Algorithm 4.1 from Section 4). Both algorithms are implemented in Maple, and the results are obtained on an Intel Xeon E7-4820 CPU (2 GHz) with 1.5 TB of RAM.

In practice, Algorithm univsos2 runs faster than Algorithm univsos1, which is consistent with the theoretical results stated in [27, Theorem 17] and [27, Theorem 24]. In addition, as mentioned in Remark 4.7, it is practically faster to compute SOS decompositions involving rational fractions than polynomials. We compare timings of the slowest algorithm, namely sosgradientshape using univsos1, with the fastest algorithm, namely sosgradient using univsos2. For each algorithm, the first step consists of obtaining h by computing either the shape position (using the procedure Basis in MAPLE) in sosgradientshape or the zero-dimensional rational parametrization (using the procedure RationalUnivariateRepresentation in Maple) in sosgradient. The runtime of this step is denoted by t_{h}. The degree and the bitsize of h are denoted by d_{h} and τ_{h}, respectively. The second step outputs an SOS decomposition of the non-negative univariate polynomial h by using either Algorithm univsos1 in sosgradientshape or Algorithm univsos2 in sosgradient.

Here, $t_{\text {sos }}$ is the runtime of the second step and $\tau_{\text {sos }}$ is the maximum bitsize of the output polynomials.

			sosgradientshape					sosgradient				
				bitsize 10^{6}-bits		time (s)			bitsize 10^{4}-bits		time (s)	
n	τ	δ	d_{h}	τ_{h}	$\tau_{\text {sos }}$	t_{h}	$t_{\text {sos }}$	d_{h}	τ_{h}	$\tau_{\text {sos }}$	t_{h}	$t_{\text {sos }}$
2	74	9	32	0.3	8.1	0.1	2.6	36	0.5	1.6	0.1	1.8
3	149	27	104	2.4	153	1.1	781	108	6.6	13.4	0.2	13.3
4	312	81	320	117	-	399	-	324	88	169	3.9	505
5	590	243	968	-		-		972	940	1306	169	4965

Table 1. Comparison results of output size and performance between Algorithm sosgradientshape and Algorithm sosgradient
In Table 1, we consider random polynomials of fixed degree $d=4$ with number of variables n being between 2 and 5 , generated as follows: $a^{4}+b_{1}^{2}+\cdots+b_{n}^{2}+c+10^{6}$, where a (resp., b_{i}, c) is a dense linear (resp., quadratic, cubic) polynomial in n variables. The coefficients of a (resp., b_{i}, c) are chosen randomly in $\{-1,1\}$ (resp., $\{-3, \ldots, 3\}$, $\{-1,0,1\}$) with respect to the uniform distribution. For $n \geq 4$, sosgradientshape failed to provide an SOS decomposition as the execution of univsos1 did not finish after 12 hours of computation, as indicated by the symbol "-" in the corresponding lines. The underlying reason is that τ_{h} and d_{h} are both very large and that the complexity of univsos1 is exponential in the degree of h [27, Theorem 17]. Note that the intermediate polynomials correspond to worst cases, i.e., the maximum possible degree of w is attained, namely $\delta=\operatorname{deg} w=(d-1)^{n}$, so the degree of h is also maximum, i.e., $\operatorname{deg} h=d(d-1)^{n}-d$ (resp. $\left.d(d-1)^{n}\right)$ in sosgradientshape (resp. in sosgradient). For such cases, sosgradient cannot compute decompositions for $n \geq 4$ (corresponding to $\operatorname{deg} h \geq 324$) within 12 hours.

Next, we compare the performance of sosgradient (using univsos2) and Algorithm multivsos [25]. Recall that multivsos is designed to compute SOS decompositions of polynomials lying in the interior of the SOS cone. We report our experimental results in Table 2, obtained with seven classes of 50 randomly generated polynomials. The random polynomials corresponding to the four first rows, with $d=4$ and $n=2, \ldots, 5$, are obtained a similar way: $a^{4}+b_{1}^{2}+b_{2}^{2}+c+10^{6}$, where a (resp., b_{i}, c) is a dense linear (resp., quadratic, cubic) polynomial in n variables. The coefficients of a (resp., b_{i}, c) are chosen randomly in $\{ \pm 1, \pm 2\}$ (resp., $\{-3, \ldots, 3\},\{-1, \ldots, 1\}$) with respect to the uniform distribution. The polynomials from the three last rows, with $d=6$ and $n=2,3,4$, are constructed in a similar way: $a^{6}+b^{2}+c+10^{6}$, where a (resp., b, c) is a dense linear (resp., cubic, cubic) polynomial in n variables. Coefficients of a (resp., b_{i}, c) are chosen randomly in $\{ \pm 1, \pm 2\}$ (resp., $\{-3, \ldots, 3\}$, $\{-1, \ldots, 1\})$ with respect to the uniform distribution. Note that here the univariate polynomials generated when running the algorithm do not correspond to the worst case scenario in terms of degree and bitsize. For both algorithms, we denote by τ (10^{4}-bits) the average bitsize of the output and by t the average runtime in seconds.

	multivsos			sosgradient	
d, n	success	τ	t	τ	t
4,2	100%	1.3	0.16	2	2
4,3	94%	3.7	0.26	18	22
4,4	38%	8.9	0.18	78	153
4,5	8%	12.5	0.32	234	630
6,2	82%	3.5	0.24	45	142
6,3	0%			160	500
6,4	0%			744	4662

Table 2. Comparison of performance between Algorithm sosgradientshape and Algorithm multivsos

From this table, we deduce that when the number of variables n increases, then the rate of success of multivsos decreases. This fact illustrates Blekherman's theorem [8] which says that if the degree $d \geq 4$ is fixed then, as the number of variables n grows, the cone of non-negative polynomials is significantly bigger than the cone of SOS polynomials. It also illustrates that sosgradient can tackle a large range of polynomial optimization problems which are out of reach of state-of-the-art algorithms such as multivsos. When multivsos succeeds in computing SOS decompositions, then it provides more concise certificates than sosgradient while being more efficient. However, when $d=4$ and $n=5$, multivsos can only decompose four polynomials out of 50 while sosgradient succeeds for all of them. This demonstrates the need of alternative procedures such as sosgradient for polynomials which presumably do not lie in the interior of the SOS cone.

Conclusions and perspectives. We designed and analyzed two algorithms to decompose a non-negative polynomial as an SOS of polynomials/rational fractions modulo the gradient ideal with rational coefficients. The correctness of our framework relies on a generic condition, namely that the gradient ideal of the input polynomial is zero-dimensional and radical. We shall improve the scalability of our algorithms by exploiting the specific structure of the input polynomial, such as correlative [23] or term sparsity [45], symmetries [35] or by using recent improvements on the computation of critical sets when the related system is invariant under group actions [12]. Furthermore, we also plan to extend our algorithms to the constrained case by relying on polar varieties as in [14] and to extend the result for positive polynomials without imposing the zero-dimensional and radical condition on the gradient ideal.

Acknowledgements. We thank the anonymous reviewers for their comments and suggestions which helped a lot to improve this article.
This work has been supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA).

Appendix.

Appendix A. Proof of Corollary 2.3. Assume that the system of partial derivatives $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ is given by a straight-line program Γ of size L, i.e., the program uses L elementary operations,,$+- \times$ to evaluate the system from variables x_{1}, \ldots, x_{n} and integers with bitsizes at $\operatorname{most~}_{\max }^{i=1} n\left\{h t\left(\frac{\partial f}{\partial x_{i}}\right)\right\}$.

We claim that L is $O\left(d\binom{n+d}{d}\right.$. Indeed, f has at most $\binom{n+d}{d}$ terms and each term in f is defined by at most $d+1$ multiplications. Hence, the size of a straight-line program Γ_{f} which defines f does not exceed $(d+1)\binom{n+d}{d}$. By applying Baur-Strassen Theorem [7, Theorem 1], the size L is $O\left(d\binom{n+d}{d}\right)$.

Recall that $h t\left(\frac{\partial f}{\partial x_{i}}\right) \leq \log d+h t(f)=\log d+\tau$, for $i=1, \ldots, n$. By applying [39, Corollary 2] for the system and a single group of variables, there exists an algorithm that takes the system as in input, and that produces one of the outputs given as in items a) - c) of Corollary 2.3. The number of boolean operations of the algorithm is $\widetilde{O}\left(n^{2} d^{2 n}(\log d+\tau+(d-1))\left(d\binom{n+d}{d}+n(d-1)+n^{2}\right)\right)$. Reduce this formula, we get (2.2). Furthermore, the polynomials in the output have degree at most $(d-1)^{n}$ and bitsize $\widetilde{O}\left((d-1)^{n}(\log d+\tau+n+(d-1))\right)=\widetilde{O}\left((\tau+n+d)(d-1)^{n}\right)$ as claimed.

Appendix B. Proof of the bit complexity in Lemma 2.4. From Corol-
lary 2.3, the degree of w is at most $(d-1)^{n}$, and then $\operatorname{deg} w^{\prime}$ is at most $(d-1)^{n}-1$. Assume that β is the positive minimum common denominator of all non-zero coefficients of w. Then, βw and βw^{\prime} belong to $\mathbb{Z}[t]$. Clearly, $\operatorname{deg}\left(\beta w^{\prime}\right)=\operatorname{deg}(\beta w)-1, \operatorname{deg}(\beta w) \leq$ $(d-1)^{n}$, and the bitsize of βw and βw^{\prime} are bounded by $\widetilde{O}\left((\tau+n+d)(d-1)^{n}\right)$. We can apply [43, Theorem 6.52] to βw and βw^{\prime}. The extended Euclidean algorithm computes the Bézout coefficient, denoted by b, of βw^{\prime} using

$$
\begin{equation*}
\left.\widetilde{O}(\tau+n+d)^{2}(d-1)^{6 n}\right) \tag{B.1}
\end{equation*}
$$

boolean operations. The bitsize of b is bounded by

$$
\begin{equation*}
O\left((\tau+n+d)(d-1)^{2 n}\right) \tag{B.2}
\end{equation*}
$$

Furthermore, one sees that the degree of b satisfies

$$
\begin{equation*}
\operatorname{deg} b \leq \operatorname{deg} w-\operatorname{deg} \operatorname{gcd}\left(w, w^{\prime}\right)=\operatorname{deg} w \leq(d-1)^{n} \tag{B.3}
\end{equation*}
$$

For every $i=2, \ldots, n$, we will estimate the bitsize of the polynomial $b \kappa_{i}$. Recall from Corollary 2.3 that $\operatorname{deg} \kappa_{i} \leq(d-1)^{n}$, hence from (B.3) one has deg $b \kappa_{i} \leq 2(d-1)^{n}$. From (B.2), we obtain

$$
h t\left(b \kappa_{i}\right) \leq h t(b)+h t\left(\kappa_{i}\right)=\widetilde{O}\left((\tau+n+d)(d-1)^{2 n}\right)+\widetilde{O}\left((\tau+n+d)(d-1)^{n}\right)
$$

After simplifying the last estimate, the bitsize of $b \kappa_{i}$ is bounded from above by $\widetilde{O}\left((\tau+n+d)(d-1)^{2 n}\right)$. Hence, the bitsize of $\eta b \kappa_{i}$, where η is the minimum common denominator of all non-zero coefficients of $b \kappa_{i}$, can be estimated as follows

$$
h t\left(\eta b \kappa_{i}\right) \leq 2 h t\left(b \kappa_{i}\right) \leq \widetilde{O}\left((\tau+n+d)(d-1)^{2 n}\right)
$$

In the proof of Lemma 2.4, we considered the division of $b \kappa_{i}$ by w and defined $v_{i}=b \kappa_{i} \bmod w$. Thus, the degree of v_{i} is at most $\operatorname{deg} w \leq(d-1)^{n}$. From Lemma 2.5, the Euclidean division algorithm computes v_{i} using at most

$$
\begin{equation*}
\widetilde{O}\left((\tau+n+d)(d-1)^{5 n}\right) \tag{B.4}
\end{equation*}
$$

boolean operations. Thus, the bitsize of v_{i} is $\widetilde{O}\left((\tau+n+d)(d-1)^{3 n}\right)$, for $i=2, \ldots, n$. Therefore, computing $\left[w, v_{2}, \ldots, v_{n}\right]$ from the zero-dimensional rational parametrization \mathcal{Q} of $V_{\text {grad }}(f)$, requires

$$
\widetilde{O}\left((\tau+n+d)^{2}(d-1)^{6 n}+(n-1)(\tau+n+d)(d-1)^{5 n}\right)
$$

boolean operations, as a consequence of (B.1) and (B.4). By applying further simplification, we obtain the desired result (2.3).

The bit complexity results of the two division algorithms used in Lemma 2.5 and Lemma 2.6 are basic but we could not find their proofs in the literature. Here we state these two algorithms and prove estimates for their bit complexities.

Appendix C. Proof of Lemma 2.5. Assume that a, b are polynomials in $\mathbb{Z}[t]$ with $\operatorname{deg} a=d \geq \operatorname{deg} b=m$ and that $h t(a), h t(b)$ are bounded from above by τ. We recall the Euclidean division algorithm in Algorithm C. 1 [43, Algorithm 2.5] to compute the quotient q and the remainder r of the division of a by b, i.e., $a=q b+r$ with $\operatorname{deg} r<\operatorname{deg} b$.

We denote by r_{i} (resp. q_{i}, h_{i}) the value of r (resp. q, h) after the i-th iteration of the while loop from Step 2. The initial values are $q_{0}=0$ and $r_{0}=a$. After each

```
Algorithm C. 1 Euclidean division algorithm
Input: polynomials \(a, b \in \mathbb{Z}[t]\)
Output: polynomials \(q, r \in \mathbb{Q}[t]\) such that \(a=q b+r\) and \(\operatorname{deg} r<\operatorname{deg} b\)
1: Let \(q:=0\) and \(r:=a\)
2: While \(\operatorname{deg} r \geq \operatorname{deg} b\) do
    3: Let \(h:=l c(r) / l c(b) t^{\operatorname{deg} r-\operatorname{deg} b}\)
    4: Let \(q:=q+h\)
    5: Let \(r:=r-h b\)
: Return \(q\) and \(r\)
```

iteration of the while loop, the degree of r is strictly decreasing. Hence, the while loop will terminate after k iterations, where $k \leq d-m$.

We now compute the numbers of boolean operations to perform the operations in Steps 3-5. From $h_{i}=l c\left(r_{i-1}\right) / l c(b) t^{\operatorname{deg} r_{i-1}-\operatorname{deg} b}$ in Step 3, we observe that

$$
\begin{equation*}
h t\left(h_{i}\right)=\max \left\{h t(b), h t\left(r_{i-1}\right)\right\} \leq \max \left\{\tau, h t\left(r_{i-1}\right)\right\} \leq \tau+h t\left(r_{i-1}\right), \tag{C.1}
\end{equation*}
$$

and the number of boolean operations to perform Step 3 is bounded by $\tau+h t\left(r_{i-1}\right)$. Note that, the number of boolean operations to perform the operation in Step 4 is bounded by $O(1)$. We consider the operation in Step 5, i.e., $r_{i}=r_{i-1}-h_{i} b$. The estimate in (C.1) implies $h t\left(h_{i} b\right) \leq 2 \tau+h t\left(r_{i-1}\right)$; then, the bitsize of r_{i} is bounded by $2 \tau+h t\left(r_{i-1}\right)$. We get the recurrence formula $h t\left(r_{i+1}\right) \leq h t\left(r_{i}\right)+2 \tau$, for each $i=0, \ldots, k$, with $h t\left(r_{0}\right)=\tau$. It follows that $h t\left(r_{i}\right) \leq 2 i \tau+\tau$, for each $i=0, \ldots, k$. This yields

$$
h t(r)=h t\left(r_{k}\right) \leq 2(d-m) \tau+\tau=O((d-m) \tau)
$$

In Step 5, the number of boolean operations to compute $h_{i} b$ is $O\left(m\left(\tau+h t\left(r_{i-1}\right)\right)\right)$, so r_{i} is also computed in $O\left(m\left(\tau+h t\left(r_{i-1}\right)\right)\right)$ boolean operations.

From above, the boolean operations to compute every iteration in Step 2 is $O(m \tau(d-m))$. Since the algorithm has at most $d-m$ iterations, the number of boolean operations to perform the algorithm is $O\left(m \tau(d-m)^{2}\right)$.

To complete the proof, we estimate for the bitsize of q. Since $q_{i}=q_{i-1}+h_{i}$, from (C.1), one has

$$
h t\left(q_{i}\right) \leq \max \left\{h t\left(q_{i-1}\right), h t\left(h_{i}\right)\right\} \leq h t\left(q_{i-1}\right)+\tau+h t\left(r_{i-1}\right) .
$$

This yields $h t(q) \leq(d-m) \tau+h t(r)=O((d-m) \tau)$. This is the desired estimate.

Appendix D. Algorithm Eliminate and the proof of Lemma 2.6.

Algorithm Eliminate. Let us consider $g \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right]$, with $\operatorname{deg} g=d$ (in variables $\left.x_{2}, \ldots, x_{n}\right)$ and $h t(g)=\tau_{g}$, and the list of rational fractions:

$$
G=\left[x_{2}-\frac{a_{2}}{a_{0}}, \ldots, x_{n}-\frac{a_{n}}{a_{0}}\right],
$$

where $a_{0}, a_{2}, \ldots, a_{n}$ are polynomials in $\mathbb{Q}\left[x_{1}\right], a_{0} \neq 0$, and $h t\left(a_{i}\right) \leq \tau_{a}$ for $i=$ $0,2, \ldots, n$. Recall that $\mathbb{Q}\left(x_{1}\right)$ is the field of rational fractions in variable x_{1} with coefficients in \mathbb{Q}. Let $x_{2}<\cdots<x_{n}$ be a lexicographic monomial order on $\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$. Algorithm Eliminate outputs the quotients $\phi_{2}, \ldots, \phi_{n} \in \mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$ and the remainder $r \in \mathbb{Q}\left(x_{1}\right)$ of the multivariate division of g by the list G satisfying

$$
\begin{equation*}
g=\sum_{i=2}^{n} \phi_{i}\left(x_{i}-\frac{a_{i}}{a_{0}}\right)+r . \tag{D.1}
\end{equation*}
$$

```
Algorithm D. 1 Elimination algorithm
Eliminate \(:=\operatorname{proc}\left(g, a_{0}, a_{2}, \ldots, a_{n}\right)\)
Input: \(n+1\) polynomials \(g \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right], a_{0}, a_{2}, \ldots, a_{n} \in \mathbb{Q}\left[x_{1}\right]\)
Output: \(\phi_{2}, \ldots, \phi_{n}\) in \(\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]\) and \(r \in \mathbb{Q}\left(x_{1}\right)\) satisfying (D.1)
    Set \(r_{n+1}:=g\)
    For \(i=n\) to 2 do
    3: Compute \(\phi_{i}:=q u o\left(r_{i+1}, x_{i}-\frac{a_{i}}{a_{0}}, x_{i}\right)\)
    4: Substitute \(x_{i}\) by \(\frac{a_{i}}{a_{0}}\) in \(r_{i+1}\) to define \(r_{i}:=r_{i+1}\left(x_{1}, \ldots, x_{i-1}, \frac{a_{i}}{a_{0}}\right)\)
5: Set \(r:=r_{2}\)
6: Return \(\phi_{2}, \ldots, \phi_{n}\), and \(r\)
```

In Step $3, \phi_{i}$ is the quotient of the univariate division (in the variable x_{i}) of r_{i+1} by $x_{i}-\frac{a_{i}}{a_{0}}$. Since the degree of x_{i} in $x_{i}-\frac{a_{i}}{a_{0}}$ is $1, \phi_{i}$ belongs to $\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{i}\right]$. The remainder r_{i} of the division in Step 3 is given in Step 4 after replacing x_{i} by $\frac{a_{i}}{a_{0}}$ in r_{i+1}; hence one has $r_{i} \in \mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{i-1}\right]$. After Steps 3-4, we obtain

$$
\begin{equation*}
r_{i+1}=\phi_{i}\left(x_{i}-\frac{a_{i}}{a_{0}}\right)+r_{i} . \tag{D.2}
\end{equation*}
$$

Therefore, after Step 5, we get $g=\sum_{i=2}^{n} \phi_{i}\left(x_{i}-\frac{a_{i}}{a_{0}}\right)+r$, with $r \in \mathbb{Q}\left(x_{1}\right)$. Based on Buchberger's Criterion [9], we can show that the system of $n-1$ polynomials $\left[x_{2}-\frac{a_{2}}{a_{0}}, \ldots, x_{n}-\frac{a_{n}}{a_{0}}\right]$ is a Gröbner basis of the ideal generated by this system w.r.t. the order $<$ in $\mathbb{Q}\left(x_{1}\right)\left[x_{2}, \ldots, x_{n}\right]$. Hence, $\phi_{2}, \ldots, \phi_{n}$ are defined uniquely. The correctness of the algorithm is proved.

The proof of Lemma 2.6. Now we estimate the bitsizes of ϕ_{i}, for $i=2, \ldots, n$. From the definition of r_{i} in Step 4, one sees that $h t\left(r_{i}\right) \leq h t\left(r_{i+1}\right)+2 d \tau_{a}$. Since $h t\left(r_{n+1}\right)=\tau_{g}$, the bitsize of r_{i} is bounded from above by $\tau_{g}+2(n-1) d \tau_{a}$. The relation (D.2) leads to $h t\left(\phi_{i}\right) \leq h t\left(r_{i+1}-r_{i}\right)+h t\left(x_{i}-\frac{a_{i}}{a_{0}}\right)$. Because of $h t\left(r_{i+1}-r_{i}\right) \leq$ $\max \left\{h t\left(r_{i+1}\right), h t\left(r_{i}\right)\right\}$, and $h t\left(\frac{a_{i}}{a_{0}}\right) \leq 2 \tau_{a}$, we get $h t\left(\phi_{i}\right) \leq \tau_{g}+2(n d-d+1) \tau_{a}$. It follows that $h t\left(\phi_{i}\right)=\widetilde{O}\left(\tau_{g}+n d \tau_{a}\right)$.

We see that the number of boolean operations to perform Steps 3 and 4 are $\widetilde{O}\left(\tau_{g}+n d \tau_{a}\right)$ and $O(1)$, respectively. The for loop in Step 2 has $n-1$ steps. Therefore, the number of boolean operations to perform the loop is $\widetilde{O}\left(n \tau_{g}+n^{2} d \tau_{a}\right)$. This is also the number of boolean operations that Algorithm Eliminate uses.

REFERENCES

[1] E. Artin, Über die zerlegung definiter funktionen in quadrate, in Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 5, Springer, 1927, pp. 100-115.
[2] B. Bank, M. Giusti, J. Heintz, M. S. El Din, and E. Schost, On the geometry of polar varieties, Applicable Algebra in Engineering, Communication and Computing, 21 (2010), pp. 33-83.
[3] B. Bank, M. Giusti, J. Heintz, and G. M. Mbakop, Polar varieties and efficient real elimination, Mathematische Zeitschrift, 238 (2001), pp. 115-144.
[4] B. Bank, M. Giusti, J. Heintz, and L. M. Pardo, Generalized polar varieties: Geometry and algorithms, Journal of complexity, 21 (2005), pp. 377-412.
[5] B. Bank, M. Giusti, J. Heintz, and M. Safey El Din, Intrinsic complexity estimates in polynomial optimization, Journal of Complexity, 30 (2014), pp. 430-443.
[6] S. Basu, R. Pollack, and M.-F. Roy, A new algorithm to find a point in every cell defined by a family of polynomials, in Quantifier elimination and cylindrical algebraic decomposition, Springer, 1998, pp. 341-350.
[7] W. Baur and V. Strassen, The complexity of partial derivatives, Theoretical computer science, 22 (1983), pp. 317-330.
[8] G. Blekherman, There are significantly more nonegative polynomials than sums of squares, Israel Journal of Mathematics, 153 (2006), pp. 355-380.
[9] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, PhD thesis, Universitat Insbruck, (1965).
[10] S. Chevillard, J. Harrison, M. Joldes, and C. Lauter, Efficient and accurate computation of upper bounds of approximation errors, Theoretical Computer Science, 412 (2011), pp. 1523-1543.
[11] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Springer Science \& Business Media, 2013.
[12] J.-C. Faugère, G. Labahn, M. Safey El Din, É. Schost, and T. X. Vu, Computing critical points for invariant algebraic systems, arXiv preprint arXiv:2009.00847, (2020).
[13] P. Gianni and T. Mora, Algebraic solution of systems of polynomial equations using Gröbner bases, in Applied Algebra, Algebraic Algorithms and Error Correcting Codes, Proceedings of AAECC-5, volume 356 of LNCS, Springer, 1989, pp. 247-257.
[14] A. Greuet, F. Guo, M. Safey El Din, and L. Zhi, Global optimization of polynomials restricted to a smooth variety using sums of squares, Journal of Symbolic Computation, 47 (2012), pp. 503-518.
[15] A. Greuet and M. Safey El Din, Probabilistic algorithm for polynomial optimization over a real algebraic set, SIAM Journal on Optimization, 24 (2014), pp. 1313-1343.
[16] D. Y. Grigor'ev and N. N. Vorobjov Jr, Solving systems of polynomial inequalities in subexponential time, Journal of symbolic computation, 5 (1988), pp. 37-64.
[17] D. Henrion, S. Naldi, and M. Safey El Din, Exact algorithms for linear matrix inequalities, SIAM Journal on Optimization, 26 (2016), pp. 2512-2539.
[18] E. Kaltofen, B. Li, Z. Yang, and L. Zhi, Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars, in Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, 2008, pp. 155-164.
[19] E. Kaltofen, Z. Yang, and L. Zhi, A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions, in Proceedings of the 2009 conference on Symbolic numeric computation, 2009, pp. 65-70.
[20] E. L. Kaltofen, B. Li, Z. Yang, and L. Zhi, Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients, Journal of Symbolic Computation, 47 (2012), pp. 1-15.
[21] E. LaNDAU, Über die darstellung definiter funktionen durch quadrate, Mathematische Annalen, 62 (1906), pp. 272-285.
[22] J. B. LASSERRE, Global optimization with polynomials and the problem of moments, SIAM Journal on optimization, 11 (2001), pp. 796-817.
[23] J. B. Lasserre, Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM Journal on Optimization, 17 (2006), pp. 822-843.
[24] V. Magron and M. Safey El Din, On Exact Polya and Putinar's Representations, in Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, 2018, pp. 279-286.
[25] V. Magron and M. Safey El Din, RealCertify: a Maple package for certifying non-negativity, ACM Communications in Computer Algebra, 52 (2018), pp. 34-37.
[26] V. Magron and M. Safey El Din, On Exact Reznick, Hilbert-Artin and Putinar's Representations, Journal of Symbolic Computation, 107 (2021), pp. 221-250.
[27] V. Magron, M. Safey El Din, and M. Schweighofer, Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials, Journal of Symbolic Computation, 93 (2019), pp. 200-220.
[28] V. Magron, H. Seidler, and T. de Wolff, Exact optimization via sums of nonnegative circuits and arithmetic-geometric-mean-exponentials, in Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, 2019, pp. 291-298.
[29] M. Marshall, Positive polynomials and sums of squares, no. 146, American Mathematical Soc., 2008.
[30] J. Nie, J. Demmel, and B. Sturmfels, Minimizing polynomials via sum of squares over the gradient ideal, Mathematical Programming, 106 (2006), pp. 587-606.
[31] P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, California Institute of Technology, 2000.
[32] P. A. Parrilo, An explicit construction of distinguished representations of polynomials non-
negative over finite sets, IfA AUT02-02, ETH Zürich, (2002).
[33] H. Peyrl and P. A. Parrilo, Computing sum of squares decompositions with rational coefficients, Theoretical Computer Science, 409 (2008), pp. 269-281.
[34] Y. Pourchet, Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arithmetica, 19 (1971), pp. 89-104.
[35] C. Riener and M. Safey el Din, Real root finding for equivariant semi-algebraic systems, in Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, 2018, pp. 335-342.
[36] R. M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, Selected questions of algebra and logic (collection dedicated to the memory of A. I. Malcev) (Russian), (1973), pp. 264-282.
[37] F. Rouillier, Solving zero-dimensional systems through the rational univariate representation, Applicable Algebra in Engineering, Communication and Computing, 9 (1999), pp. 433-461.
[38] M. Safey El Din and E. Schost, Polar varieties and computation of one point in each connected component of a smooth real algebraic set, in Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, pp. 224-231.
[39] M. Safey El Din and É. Schost, Bit complexity for multi-homogeneous polynomial system solving-Application to polynomial minimization, Journal of Symbolic Computation, 87 (2018), pp. 176-206.
[40] M. Safey El Din and L. Zhi, Computing rational points in convex semi-algebraic sets and sums-of-squares decompositions, SIAM Journal on Optimization, 20 (2010), pp. 2876-2889.
[41] C. Scheiderer, Sums of squares of polynomials with rational coefficients, Journal of the European Mathematical Society, 18 (2016), pp. 1495-1513.
[42] M. Schweighofer, Algorithmische beweise für nichtnegativ-und positivstellensätze, Master's thesis, Universität Passau, 136 (1999).
[43] J. Von Zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013.
[44] J. Wang and V. Magron, A second order cone characterization for sums of nonnegative circuits, in Proceedings of the 45 th International Symposium on Symbolic and Algebraic Computation, 2020, pp. 450-457.
[45] J. Wang, V. Magron, and J.-B. Lasserre, Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension, SIAM Journal on Optimization, 31 (2021), pp. 114-141.

[^0]: *Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Toulouse, France (vmagron@laas.fr)
 ${ }^{\dagger}$ Sorbonne Université, LIP6, Paris, France (mohab.safey@lip6.fr)
 \ddagger Sorbonne Université, LIP6, Paris, France (trung-hieu.vu@lip6.fr)

[^1]: ${ }^{1}$ This means that it has finitely many complex solutions.
 ${ }^{2}$ This means that if $h^{k} \in \mathcal{I}_{\text {grad }}(f)$ for some $k \in \mathbb{N}-\{0\}$, then $h \in \mathcal{I}_{\text {grad }}(f)$.

