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ABSTRACT
We consider the problem of computing a grevlex Gröbner basis for
the set 𝐹𝑟 (𝑀) of minors of size 𝑟 of an 𝑛 × 𝑛 matrix 𝑀 of generic
linear forms over a field of characteristic zero or large enough. Such
sets are not regular sequences; in fact, the ideal ⟨𝐹𝑟 (𝑀)⟩ cannot be
generated by a regular sequence. As such, when using the general-
purpose algorithm 𝐹5 to find the sought Gröbner basis, some com-
puting time is wasted on reductions to zero. We use known results
about the first syzygy module of 𝐹𝑟 (𝑀) to refine the 𝐹5 algorithm
in order to detect more reductions to zero. In practice, our approach
avoids a significant number of reductions to zero. In particular, in
the case 𝑟 = 𝑛 − 2, we prove that our new algorithm avoids all
reductions to zero, and we provide a corresponding complexity
analysis which improves upon the previously known estimates.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms; • The-
ory of computation→ Design and analysis of algorithms.
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1 INTRODUCTION
Motivation and problem. Let 𝑀 be an 𝑛 × 𝑛 matrix with entries
in the polynomial ring R = k[𝑥1, . . . , 𝑥𝑘 ] where k is a field. For
𝑟 < 𝑛, we let I𝑟 (𝑀) be the determinantal ideal generated by the
sequence 𝐹𝑟 (𝑀) of all minors of 𝑀 of size 𝑟 + 1. We consider the
problem of computing the common roots in k̄𝑘 to 𝐹𝑟 (𝑀), hence
those points at which𝑀 has rank at most 𝑟 . ThisNP-hard problem
MinRank [16], and its variants where𝑀 may be rectangular, lies at
the heart of multivariate cryptography. It is at the foundations of
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several schemes [17, 38, 46] and is still used to assess the security
of encryption and signature schemes [2, 7, 8, 12, 19, 26].

Determinantal ideals also arise in fundamental areas such as
effective real algebraic geometry as they encode critical points
(see e.g. [28, 49]), then used to solve a variety of problems. This
includes polynomial optimization [4, 31], computing sample points
and answering connectivity queries in smooth real algebraic sets [3,
5, 47, 48], determining the dimension of real algebraic sets [6, 41],
and quantifier elimination over the reals [35, 36, 44].

Determinantal ideals and polynomial system solving. Determi-
nantal ideals enjoy plenty of combinatorial and algebraic proper-
ties [13, 14, 42] which can be leveraged to better understand the
complexity of computing their roots, and to adapt and accelerate
polynomial system solvers in this context. The most advanced re-
sults in this direction have been achieved in the context of symbolic
homotopy techniques with the design of an adapted homotopy pat-
tern [34] which has next been refined to take into account specific
structures when the entries of the matrix𝑀 are sparse [40].

In this paper, we focus on the problem of computing Gröbner
bases of the ideal I𝑟 (𝑀) w.r.t. some admissible monomial ordering,
under the assumptions that I𝑟 (𝑀) has dimension 0 (or is R) and
that the entries of𝑀 have total degree at most 1.

Gröbner bases algorithms and determinantal ideals. Since Buch-
berger’s algorithm [15], the quest for fast algorithms for computing
Gröbner bases has been driven by two main issues: (i) finding bet-
ter strategies for handling critical pairs during the Gröbner basis
construction and (ii) hunting reductions to 0 which are instrinsi-
cally related to algebraic objects named syzygies that are associated
to the ideal under consideration. Issue (i) has been addressed by
Faugère’s celebrated 𝐹4 algorithm [24], which also made explicit
the use of linear algebra subroutines in Gröbner bases algorithms.
While a lot remains to be done in this direction (see e.g. [11]), much
attention has focused on issue (ii) and variants of Faugère’s 𝐹5 algo-
rithm [25] have been developed in several directions to give rise to
signature-based Gröbner bases algorithms (see [21] and references
therein). One byproduct of these works, which finds its roots in
foundational works by Lazard and Giusti [30, 43], is that they paved
the way to complexity estimates under some regularity assumptions,
thanks to the reduction to linear algebra and degree bounds on the
maximum degree reached during the computation (related to the
classical notion of index of regularity [18, Chap. 9, §3]).

This has been developed, for determinantal ideals in [27, 29]
which yield complexity estimates for computing Gröbner bases
under regularity assumptions (which are generic in the sense of al-
gebraic geometry). These estimates are coarse: they do not leverage
the shape of the matrices encountered during the computation.

Already in the simpler case of regular sequences, by exploiting
the fact that the 𝐹5 algorithm avoids all reductions to zero in this
case, a sharper complexity analysis of 𝐹5 [9] shows significant
improvements against such coarse estimates.
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In the context of determinantal ideals, mimicking this to get
better complexity estimates is premature. Indeed, 𝐹𝑟 (𝑀) is not a
regular sequence, and running the 𝐹5 algorithm with input 𝐹𝑟 (𝑀)
does lead to a number of reductions to 0. Hence there is a need to
refine and tune the 𝐹5 algorithm for determinantal ideals. Such a
refinement has already been achieved for boolean polynomial sys-
tems [10]. However, recall that these reductions to 0 are related to
so-called syzygy modules of the ideal under study. Syzygy modules
of determinantal ideals are notoriously more intricate than those
of ideals generated by regular sequences or boolean systems.

In this paper, we tackle the following problems: (i)What is the
suitable notion of regularity one can attach to determinantal ideals
in order to hunt reductions to 0? (ii) What are the properties of
modules of syzygies associated to determinantal ideals one can
leverage under this notion of regularity? (iii) How to refine the 𝐹5
algorithm for determinantal ideals to obtain fewer reductions to 0
and, ultimately, are there some instances of determinantal ideals
for which one can prove that there are no reductions to 0?

Foundations. We begin by recalling first the connection between
free resolutions and syzygy modules of ideals, and then the syzygy
criterion from [21] which reveals the link between free resolutions
and reductions to zero in 𝐹5. In Algorithm 1, we give an altered
version of the standard matrix-𝐹5 algorithm: it computes Gröbner
bases for modules over R and exploits the full syzygy criterion (see
Proposition 2.4), allowing us to leverage reductions to zero in lower
degrees to avoid reductions to zero in subsequent degrees.

Explicitly describing free resolutions of determinantal ideals is
in general an extremely difficult problem. It is in fact not known
if there even exists a minimal free resolution of the system of
(𝑟 + 1)-minors of a matrix of indeterminates over Z which remains
minimal under arbitrary base change. While the Lascoux resolution
[42] provides a free resolution of determinantal ideals, it is not
minimal and requires that the coefficient ring have characteristic
zero. Instead of computing a free resolution of these determinantal
ideals directly, we instead adopt a strategywhich relies on a theorem
of Kurano [39]. It describes the connection between syzygies of
(𝑟 + 1)-minors of a matrix𝑀 and syzygies between (𝑟 + 1)-minors
of the (𝑟 + 2) × (𝑟 + 2) submatrices of 𝑀 . Using this theorem, we
essentially reduce to the case 𝑟 = 𝑛 − 2. In this case, an explicit free
resolution exists, given by Gulliksen and Negård in [14].

Main results. Having made this reduction, we establish the gener-
icity property which our ideals must satisfy in order for the Gullik-
sen-Negård complex to be exact: for any 1 ≤ 𝑟 < 𝑛, the ideal of
(𝑟 +1)-minors of an 𝑛×𝑛 matrix of indeterminates has the so-called
Cohen-Macaulay property. Thus, for a suitably generic choice of
coefficients of the linear forms in 𝑀 , the ideal I𝑟 (𝑀) is Cohen-
Macaulay as well. It is precisely under the genericity assumption
derived from this notion that the complex of Gulliksen and Negård
is a free resolution of I𝑛−2 (𝑀), and can therefore be exploited to
avoid reductions to zero.

By tracing basis elements for the free modules which make up
the complex of Gulliksen and Negård, we are able (Theorem 3.2)
to explicitly compute a generating set for the first syzygy module
of the system of (𝑛 − 1)-minors of an 𝑛 × 𝑛 matrix of linear forms,
provided the above stated genericity assumption holds. Kurano’ s
result [39] states that for any 1 ≤ 𝑟 < 𝑛, the first module of syzygies

Syz(𝐹𝑟 (𝑀)) is generated by the syzygies between the (𝑟 +1)-minors
of each (𝑟 + 2) × (𝑟 + 2) submatrix of𝑀 .

Therefore, combining the complex of Gulliksen and Negård with
the result of [39], we are able to explicitly compute a full generating
set for Syz(𝐹𝑟 (𝑀)), and subsequently provide Algorithm 2, which
computes a grevlex Gröbner basis for I𝑟 (𝑀) while avoiding all
reductions to zero which arise from the syzygies in degree one.

Under our genericity assumption, when 𝑟 = 𝑛 − 2, the Gulliksen-
Negård complex allows us to compute generating sets for the higher
syzygy modules of 𝐹𝑛−2 (𝑀) as well. In Proposition 5.1, we give
explicit generators for the second syzygy module of I𝑛−2 (𝑀). This
study culminates in Algorithm 3 which is an altered version of
matrix-𝐹5 which avoids all reductions to zero. Finally, in Proposi-
tion 6.1, we again exploit the Gulliksen-Negård complex to provide
an explicit form for the Hilbert series of I𝑛−2 (𝑀) when the entries
of 𝑀 are sufficiently generic homogeneous linear forms, and when
I𝑛−2 (𝑀) has dimension zero (𝑘 = 4). In Proposition 6.2, we use this
series to give a complexity analysis of our new algorithm in the
case 𝑟 = 𝑛 − 2, demonstrating that asymptotically, the arithmetic
complexity of our new algorithm is in 𝑂 (𝑛4𝜔−1), while the cur-
rent best-known asymptotic arithmetic complexity of computing a
grevlex Gröbner basis for I𝑛−2 (𝑀) is in𝑂 (𝑛5𝜔+2). Here, 2 ≤ 𝜔 ≤ 3
is a complexity exponent for matrix multiplication.

We conclude by giving, in Table 1, some experimental data show-
ing the amount of reductions to zero that is saved by our contribu-
tions and their practical interest.

Perspectives. In [45], it is shown that in some cases, one can obtain
generators for the second syzygy module of I𝑟 (𝑀) by lifting second
syzygies of minors of submatrices, as is the case for first syzygies.
Thus, the careful treatment of the Gulliksen-Negård complex which
we give in this paper could be exploited in future works to avoid
more reductions to zero when 𝑟 < 𝑛 − 2.

Similarly, suppose𝑀 is no longer a square matrix, but is instead
an 𝑛 × 𝑚, 𝑛 ≠ 𝑚 matrix of generic homogeneous linear forms
over k. Then when 𝑟 = min(𝑛,𝑚) − 1 so that I𝑟 (𝑀) is the ideal
of maximal minors of 𝑀 , the Eagon-Northcott complex (see [14,
2.C] and [20]) provides a free resolution of I𝑟 (𝑀). Similarly, when
𝑟 = min(𝑛,𝑚) − 2, the Akin-Buschbaum-Weyman complex (see [1])
provides a free resolution of I𝑟 (𝑀). Again, the tools and methods
brought in this paper could be adapted to accelerate Gröbner bases
computations in this case and yield new complexity bounds.

Finally, in full generality, the Lascoux resolution (see [42]), is
a free resolution for I𝑟 (𝑀) for any 𝑛,𝑚, 𝑟 provided Q ⊆ k. Again,
one may expect refined F5 algorithms by leveraging this resolution.

2 PRELIMINARIES
2.1 Syzygies
We recall basic definitions and properties of syzygy modules, when
working over the Noetherian ring R = k[𝑥1, . . . , 𝑥𝑘 ]. We refer
to [22] for more details. For a finitely generated R-moduleM =

⟨𝑝1, . . . , 𝑝ℓ ⟩, the first syzygy module ofM is defined as

Syz(M) := {(𝑠1, . . . , 𝑠ℓ ) ∈ Rℓ : 𝑠1𝑝1 + · · · + 𝑠ℓ𝑝ℓ = 0}.

This definition depends on the generators; we sometimes write
Syz(𝑝1, . . . , 𝑝ℓ ). From there one inductively defines the 𝑗-th syzygy
module of M as follows. Since R is Noetherian, Syz𝑗−1 (M) is
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finitely generated. With generators {𝑞1, . . . , 𝑞𝑡 } for Syz𝑗−1 (M),

Syz𝑗 (M) := {(𝑠1, . . . , 𝑠𝑡 ) ∈ R𝑡 : 𝑠1𝑞1 + · · · + 𝑠𝑡𝑞𝑡 = 0}.

It is frequent thatM is the ideal generated by polynomials 𝐹 =

(𝑓1, . . . , 𝑓ℓ ) ⊆ R. Then, the first syzygy module of 𝐹 contains the
Koszul syzygies, which are those following from the commutativity
of polynomial multiplication: 𝑓𝑖 𝑓𝑗 − 𝑓𝑗 𝑓𝑖 = 0. In fact, they generate
Syz(𝐹 ) in the case of regular sequences (that is, when 𝑓𝑖 is not a
zero-divisor in R/⟨𝑓1, . . . , 𝑓𝑖−1⟩ for any 2 ≤ 𝑖 ≤ ℓ):

Theorem 2.1 ([23, Thm. A.2.49]). If (𝑓1, . . . , 𝑓ℓ ) is a regular sequence,
then Syz(𝐹 ) =

〈
𝑓𝑖𝑒 𝑗 − 𝑓𝑗𝑒𝑖 : 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗

〉
where 𝑒𝑖 is 𝑖-th stan-

dard basis vector.

In the context of 𝐹𝑟 (𝑀), while the Koszul syzygies are among
the syzygies of the minors of𝑀 , they do not generate Syz(𝐹𝑟 (𝑀)).

2.2 Free resolutions
As highlighted in Section 1, in relation to the 𝑘-th syzygy module
of 𝐹𝑟 (𝑀), our approach involves the description of a free resolution
of I𝑟 (𝑀) (when 𝑟 = 𝑛 − 2). For a finitely generated R-moduleM, a
free resolution ofM is an exact complex

· · · 𝑑𝑡+1−−−→ E𝑡
𝑑𝑡−−→ E𝑡−1

𝑑𝑡−1−−−−→ · · · 𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→M → 0

where for each 𝑗 > 0, E 𝑗 is a finitely generated free R-module, and
the 𝑑 𝑗 are R-module homomorphisms. The exactness condition
precisely means that ker(𝑑 𝑗 ) = im(𝑑 𝑗+1). The free resolution E• is
said to be finite if there exists some𝑚 ≥ 0 such that for all 𝑗 > 𝑚,
E 𝑗 = {0}; then the smallest such𝑚 is called the length of E•. In
general, modules need not have finite free resolutions; however, it
is the case for finitely generated modules over R = k[𝑥1, . . . , 𝑥𝑘 ]:

Theorem 2.2 (Hilbert’s syzygy theorem). LetM be a finitely gener-
ated R-module. There exists a free resolution

0→ E𝑚
𝑑𝑚−−→ E𝑚−1

𝑑𝑚−1−−−−→ · · · 𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→M → 0

whose length𝑚 is at most the number of variables 𝑘 .

Proposition 2.3. LetM be a finitely generated R-module, E• be
a free resolution ofM of length𝑚 ≤ 𝑘 , and ℓ be the rank of E0. Let
{𝑒1, . . . , 𝑒ℓ } be the standard basis for E0, and 𝑝𝑖 = 𝜖 (𝑒𝑖 ) for 1 ≤ 𝑖 ≤ ℓ .
Then ker(𝜖) = Syz(𝑝1, . . . , 𝑝ℓ ).

Following Proposition 2.3, if we fix a generating set {𝑞1, . . . , 𝑞𝑡 }
of Syz(M) = ker(𝜖), then we can take E1 = R𝑡 and, as a matrix,
𝑑1 = (𝑞𝑖 𝑗 )1≤𝑖≤𝑡,1≤ 𝑗≤ℓ . Continuing in this fashion, we construct
𝑑2, . . . , 𝑑𝑚 such that Syz𝑗+1 (M) = ker(𝑑 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑚.

2.3 The matrix-F5 algorithm
The matrix-𝐹5 algorithm [9] is based on 𝐹5 [25]. For the needs of
this paper, we describe here a version of the former which exploits
a more general syzygy criterion of the latter, as explained below.

Throughout, we will take ≺ to be the grevlex monomial order on
R, and ≺pot to be the position over term order on the free module
R𝑡 , for any 𝑡 ≥ 1. That is, for monomials 𝑥 = (0, . . . , 0, 𝑥𝑖 , 0, . . . , 0)
and 𝑦 = (0, . . . , 0, 𝑦 𝑗 , 0, . . . , 0) in R𝑡 with respective supports 𝑖 and
𝑗 , 𝑥 ≺pot 𝑦 if and only if 𝑖 < 𝑗 or (𝑖 = 𝑗 and 𝑥𝑖 ≺ 𝑦 𝑗 ).

2.3.1 Macaulay matrices; signatures. We take the standard grading
by degree on R, which induces a grading on the free module R𝑡 for
any 𝑡 ∈ Z>0. Let 𝐹 = (𝑓1, . . . , 𝑓ℓ ) ⊆ R𝑡 be a sequence of homoge-
neous elements of R𝑡 . That is, for each 1 ≤ 𝑖 ≤ ℓ , all coordinates of
𝑓𝑖 (with respect to the standard basis of R𝑡 ) are homogeneous of the
same degree. We assume 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑ℓ , where 𝑑𝑖 = deg(𝑓𝑖 ),
without loss of generality. For 𝑑 ≥ 𝑑1 and 1 ≤ 𝑖 ≤ ℓ , let ℳ𝑑,𝑖 be
the Macaulay matrix of (𝑓1, . . . , 𝑓𝑖 ) in degree 𝑑 . Each row ofℳ𝑑,𝑖

corresponds to a polynomial 𝜏 𝑓𝑗 where 1 ≤ 𝑗 ≤ 𝑖 , 𝑑 𝑗 ≤ 𝑑 , and 𝜏 is
a monomial of degree 𝑑 − 𝑑 𝑗 ; the pair ( 𝑗, 𝜏) is called the signature
of this row. The columns of ℳ𝑑,𝑖 are indexed by the monomials of
R𝑡 of degree 𝑑 , and are ordered in decreasing order with respect
to ≺pot. We take a position over term order ≺sig on the set of pairs
( 𝑗, 𝜏) with 1 ≤ 𝑗 ≤ ℓ and 𝜏 a monomial of R:

( 𝑗 ′, 𝜏 ′) ≺sig ( 𝑗, 𝜏) if 𝑗 ′ < 𝑗 or ( 𝑗 ′ = 𝑗 and 𝜏 ′ ≺ 𝜏) .

A valid row operation on ℳ𝑑,𝑖 consists in adding to a row with
signature ( 𝑗, 𝜏) some k-multiple of a row with signature which is
≺sig-less than ( 𝑗, 𝜏). We denote by ℳ̄𝑑,𝑖 any row echelon form of
ℳ𝑑,𝑖 obtained via a sequence of valid row operations. We will de-
note by lt(ℳ̄𝑑,𝑖 ) the monomials corresponding to the pivot columns
of ℳ̄𝑑,𝑖 . Recall that the 𝑓1, . . . , 𝑓ℓ are homogeneous. The nonzero
rows of ℳ̄𝑑,𝑖 therefore form the elements of degree 𝑑 of a Gröbner
basis for ⟨𝑓1, . . . , 𝑓𝑖 ⟩. For an integer 𝐷 ≥ 0, a set 𝐺 is called a 𝐷-
Gröbner basis for ⟨𝐹 ⟩ if for all elements 𝑓 ∈ ⟨𝐹 ⟩ of degree at most
𝐷 , ltpot (𝑓 ) ∈ ltpot (⟨𝐺⟩). Thus, a 𝐷-Gröbner basis forM = ⟨𝐹 ⟩ is
obtained by computing ℳ̄𝑑,ℓ for all 𝑑1 ≤ 𝑑 ≤ 𝐷 . Note that when
𝑡 = 1, 𝑓1, . . . , 𝑓ℓ are polynomials, andM = ⟨𝐹 ⟩ is simply a homoge-
neous ideal of R, whence the rows of ℳ̄𝑑,𝑖 form the elements of
degree 𝑑 of a traditional Gröbner basis for ⟨𝑓1, . . . , 𝑓𝑖 ⟩.

2.3.2 The syzygy criterion. When there are syzygies amongst 𝒇 =

(𝑓1, . . . , 𝑓ℓ ), the Macaulay matricesℳ𝑑,𝑖 do not have full rank. With
prior knowledge of these syzygies, the matrix-𝐹5 algorithm can
avoid rows which reduce to zero when computing ℳ̄𝑑,𝑖 from ℳ𝑑,𝑖 .

Proposition 2.4 (Syzygy Criterion, [21, Lem. 6.4]). Let 𝑠 =

(𝑠1, . . . , 𝑠ℓ ) be a homogeneous syzygy of 𝒇 and ltpot (𝑠) = 𝜏𝑒𝑖 . Then

(1) The row ofℳdeg𝜏+𝑑𝑖 ,𝑖 with signature (𝑖, 𝜏) is a linear combination
of rows ofℳdeg𝜏+𝑑𝑖 ,𝑖 of smaller signature.

(2) For any monomial 𝜎 ∈ R, the row ofℳdeg𝜏+deg𝜎+𝑑𝑖 ,𝑖 with sig-
nature (𝑖, 𝜎𝜏) is a linear combination of rows ofℳdeg𝜏+deg𝜎+𝑑𝑖 ,𝑖
of smaller signature.

Proof. We have 𝜏 𝑓𝑖 = −
∑

𝑗≠𝑖 𝑠 𝑗 𝑓𝑗 − 𝑓𝑖 (𝑠𝑖 − ltpot (𝑠)). The module
element 𝜏 𝑓𝑖 corresponds to the row of ℳdeg𝜏+𝑑𝑖 ,𝑖 with signature
(𝑖, 𝜏), while ∑

𝑗≠𝑖 𝑠 𝑗 𝑓𝑗 − 𝑓𝑖 (𝑠𝑖 − ltpot (𝑠)) is a k-linear combination
of other rows ofℳdeg𝜏+𝑑𝑖 ,𝑖 . This proves Item 1.

Suppose now that the row with signature (𝑖, 𝜏) of ℳ̄deg𝜏+𝑑𝑖 ,𝑖 is
a zero row. Then the polynomial 𝜏 𝑓𝑖 is a k-linear combination of
rows of ℳdeg𝜏+𝑑𝑖 ,𝑖 with smaller signature, i.e.,

𝜏 𝑓𝑖 =
∑︁

(𝑖′,𝜏 ′ )≺sig (𝑖,𝜏 )
𝑐 (𝑖′,𝜏 ′ )𝜏

′ 𝑓𝑖′ for some 𝑐 (𝑖′,𝜏 ′ ) ∈ k.

We can write 𝜎𝜏 𝑓𝑖 =
∑
(𝑖′,𝜏 ′ )≺sig (𝑖,𝜏 ) 𝑐 (𝑖′,𝜏 ′ )𝜎𝜏

′ 𝑓𝑖′ , for any monomial
𝜎 in R. Hence, the row with signature (𝑖, 𝜎𝜏) ofℳdeg𝜏+deg𝜎+𝑑𝑖 ,𝑖 is
a k-linear combination of rows with smaller signature. □
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If 𝑡 = 1, the Koszul syzygies 𝑓𝑗 𝑓𝑖 − 𝑓𝑖 𝑓𝑗 = 0 for all 1 ≤ 𝑖, 𝑗 ≤ ℓ

always exist, and produce linear dependencies between the rows
of the Macaulay matrices. The matrix-𝐹5 algorithm works by inter-
preting these syzygies in this way to predict the signatures of rows
which will reduce to zero when computing ℳ̄𝑑,𝑖 from ℳ𝑑,𝑖 , and
avoiding such rows altogether. Succinctly, this algorithm utilizes
the following criterion, which is a specialization of Proposition 2.4.

Proposition 2.5 (𝐹5 Criterion, [25, Thm. 1]). The rows with sig-
nature (𝑖, 𝜏) ofℳ𝑑,𝑖 reduce to zero in ℳ̄𝑑,𝑖 , for all 𝜏 ∈ lt(ℳ̄𝑑−𝑑𝑖 ,𝑖−1).

2.3.3 The matrix-𝐹5 algorithm. When 𝑡 = 1, combining the syzygy
criterion with Proposition 2.5 leads to the matrix-𝐹5 algorithm. It
works incrementally by degree and index. That is, for a fixed degree
𝑑 , it first computes the elements of degree 𝑑 of a Gröbner basis
for (𝑓1) by reducing the matrixℳ𝑑,1 to ℳ̄𝑑,1, and then builds the
matrixℳ𝑑,2 using ℳ̄𝑑,1. Continuing in this fashion, it eventually
builds and reduces ℳ𝑑,ℓ , yielding the elements of degree 𝑑 of a
Gröbner basis for the full system 𝐹 .

In Algorithm 1, we complement the description of this algorithm
from [9] by integrating Item 2 of Proposition 2.4. This is important
since it allows us to avoid a significant number of reductions to zero
that would occur without it. We allow for the input of precomputed
syzygies of 𝐹 in order to exploit Proposition 2.4 and we allow 𝑡 ≥ 1.
The termination and correction of Algorithm 1 is from [9, Thm. 9]
when 𝑡 = 1, and the same induction argument works when 𝑡 > 1.

2.4 Genericity
We take notation from [29, Sec. 2 and 3]. Fix 𝑛, 𝑘 ∈ Z>0. Define
𝔞 = {𝔞 (𝑖, 𝑗 )𝑡 : 1 ≤ 𝑡 ≤ 𝑘, 1 ≤ 𝑖, 𝑗 ≤ 𝑛}. For each 1 ≤ 𝑖, 𝑗 ≤ 𝑛, let 𝑓𝑖, 𝑗 =∑𝑘
𝑡=1 𝑎

(𝑖, 𝑗 )
𝑡 𝑥𝑡 ∈ k[𝔞, 𝑥1, . . . , 𝑥𝑘 ]. We call 𝑓𝑖, 𝑗 a generic homogeneous

linear form. We denote by𝒜 the matrix over k[𝔞, 𝑥1, . . . , 𝑥𝑘 ] whose
(𝑖, 𝑗) entry is 𝑓𝑖, 𝑗 . Next, for a fixed 𝒂 =

(
𝑎
(𝑖, 𝑗 )
𝑡

)
∈ k̄𝑘 ·𝑛2

, we denote
by 𝜑𝒂 the specialization map 𝜑𝒂 : k[𝔞, 𝑥1, . . . , 𝑥𝑘 ] → k̄[𝑥1, . . . , 𝑥𝑘 ]
which specializes 𝔞 (𝑖, 𝑗 )𝑡 to 𝑎 (𝑖, 𝑗 )𝑡 . We call a map

𝒫 : Ideals(k[𝔞, 𝑥1, . . . , 𝑥𝑘 ]) → {true, false}.
a property. For an integer 1 ≤ 𝑟 < 𝑛, we will denote by I𝑟 (𝒜) the
ideal of (𝑟 + 1)-minors of𝒜. Subsequently, a property𝒫 is called
I𝑟 (𝒜)-generic if there exists a nonempty Zariski open subset𝑈 of
A𝑘𝑛

2

k
such that for all 𝒂 ∈ 𝑈 ,𝒫 (𝜑𝒂 (I𝑟 (𝒜))) = true.

An important property is the notion of Cohen-Macaulayness.
Let I be an ideal of R. A sequence (𝑓1, . . . , 𝑓ℓ ) ⊆ R is called an
I-regular sequence if for all 1 ≤ 𝑖 ≤ ℓ , 𝑓𝑖 is not a zero-divisor in the
module I/⟨𝑓1, . . . , 𝑓𝑖−1⟩. The ideal I is called Cohen-Macaulay if
there exists anI-regular sequence (𝑓1, . . . , 𝑓ℓ ) such that ℓ = dim(I)
(here dim(I) is the Krull dimension of I in R).

Remark 2.6. If (𝑓1, . . . , 𝑓ℓ ) is an I-regular sequence, then ℓ ≤
dim(I). Hence, Cohen-Macaulayness requires that there exists
an I-regular sequence of maximal possible length in R.

Proposition 2.7. Let CM be the property CM(I) = true if I
is Cohen-Macaulay and CM(I) = false otherwise. Then for any
1 ≤ 𝑟 ≤ 𝑛 − 2, CM is I𝑟 (𝒜)-generic.

Proof. Let 𝑈 be an 𝑛 × 𝑛 matrix of indeterminates; I𝑟 (𝑈 ) is
Cohen-Macaulay [14, Thm. 2.5]; [29, Lem. 3] ends the proof. □

Algorithm 1 Matrix-𝐹5 (𝐹, 𝐷, 𝑆)
Input: A sequence 𝐹 = (𝑓1, . . . , 𝑓ℓ ) of homogeneous elements of

degrees 𝑑1 ≤ · · · ≤ 𝑑ℓ in k[𝑥1, . . . , 𝑥𝑘 ]𝑡 ; a degree bound 𝐷 ; a
set 𝑆 of syzygies of 𝐹 .

Output: The reduced POT 𝐷-Gröbner basis for ⟨𝐹 ⟩.
1: for 𝑖 ∈ {1, . . . , ℓ} do 𝐺𝑖 ← ∅
2: for 𝑑 from 𝑑1 to 𝐷 do
3: ℳ𝑑,0 ← ∅; Crit← ltpot (𝑆)
4: for 𝑖 from 1 to ℓ do
5: if 𝑑 < 𝑑𝑖 thenℳ𝑑,𝑖 ←ℳ𝑑,𝑖−1
6: else if 𝑑 = 𝑑𝑖 then
7: ℳ𝑑,𝑖 ← concatenate the row 𝑓𝑖 to ℳ̄𝑑,𝑖−1 with signature (𝑖, 1)
8: else
9: ℳ𝑑,𝑖 ← ℳ̄𝑑,𝑖−1
10: if 𝑡 = 1 then
11: for 𝜏 ∈ lt(ℳ𝑑−𝑑𝑖 ,𝑖−1) do
12: Crit← Crit ∪ {(𝑖, 𝜏)}
13: for 𝑓 ∈ rows(ℳ̄𝑑−1,𝑖 ) ∖ rows(ℳ̄𝑑−1,𝑖−1) do
14: (𝑖, 𝜏) ← signature of 𝑓
15: if 𝑓 = 0 then
16: for 𝑗 ∈ {1, . . . , 𝑘} do
17: Crit← Crit ∪ {(𝑖, 𝜏 · 𝑥 𝑗 )}
18: for 𝑓 ∈ rows(ℳ𝑑−1,𝑖 ) ∖ rows(ℳ𝑑−1,𝑖−1) do
19: (𝑖, 𝜏) ← signature of 𝑓
20: for 𝑗 ∈ {max{ 𝑗 ′ : 𝑥 𝑗 ′ | 𝜏}, . . . , 𝑘} do
21: if (𝑖, 𝜏 · 𝑥 𝑗 ) ∉ Crit then
22:ℳ𝑑,𝑖 ← concatenate the row𝑥 𝑗 𝑓 toℳ𝑑,𝑖 with signature (𝑖, 𝜏 ·𝑥 𝑗 )
23: ℳ̄𝑑,𝑖 ← reduced row echelon form of ℳ𝑑,𝑖 obtained

via a sequence of valid elementary row operations
24: 𝐺𝑖 ← 𝐺𝑖 ∪ {𝑓 ∈ rows(ℳ̄𝑑,𝑖 ) : 𝑓 ∉ ⟨lt(𝐺𝑖 )⟩}
25: return 𝐺ℓ

3 SYZYGIES OF DETERMINANTAL IDEALS
Here, we focus on the syzygies between the minors 𝐹𝑟 (𝑀) of order
𝑟 + 1 of 𝑀 . The module Syz(𝐹𝑟 (𝑀)) is known to be generated by
syzygies between minors of order 𝑟 + 1 of submatrices of𝑀 of size
(𝑟 + 2) × (𝑟 + 2) [39, Thm. 5.1]. This allows us to reduce the problem
of computing generators for Syz(𝐹𝑟 (𝑀)) from the general case to
the case 𝑟 = 𝑛 − 2. The Gulliksen-Negård complex [14, 33] is a
free resolution of I𝑛−2 (𝑀). We will exploit this complex to obtain
Syz(𝐹𝑟 (𝑀)) first when 𝑟 = 𝑛 − 2, then in full generality.

3.1 The Gulliksen-Negård complex
The Gulliksen-Negård complex is a free resolution of I𝑛−2 (𝑀),

0→ E3
𝑑3−−→ E2

𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→ I𝑛−2 (𝑀) → 0.

As such, we can use Proposition 2.3 to compute the first syzygy
module of the set of generators 𝐹𝑛−2 (𝑀) as the kernel of the aug-
mentation map 𝜖 of this complex. We recall the construction of the
complex here; details and proofs can be found in [14, 2.D].

We denote byM𝑛 (R) the set of 𝑛 × 𝑛 matrices over R, with the
structure of a free R-module of rank 𝑛2. We will denote by 𝑬𝑖, 𝑗 the
standard (𝑖, 𝑗)-th basis matrix ofM𝑛 (R). In this section we will
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take as generators for I𝑛−2 (𝑀) the cofactors of𝑀 . To that end, let
𝑀∗ = (𝑀∗

𝑖, 𝑗
)𝑖, 𝑗 ∈ M𝑛 (R) be the matrix of these cofactors.

3.1.1 The modules. We begin by defining the component modules
E3, E2, E1, E0. Let E0 =M𝑛 (R). Consider the sequence

R 𝜄−→M𝑛 (R) ⊕ M𝑛 (R)
𝜋−→ R

with 𝜄 (𝑎) = (𝑎𝐼𝑛, 𝑎𝐼𝑛), where 𝐼𝑛 is the identity matrix inM𝑛 (R)
and 𝜋 (𝑋,𝑌 ) = tr(𝑋 − 𝑌 ) is the trace of 𝑋 − 𝑌 . The module ker(𝜋)
is generated by the union of the following sets:
• {(0, 𝑬𝑖, 𝑗 ) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗},
• {(𝑬𝑖, 𝑗 , 0) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗},
• {(𝑬𝑖,𝑖 , 𝑬1,1) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖 ≤ 𝑛}, and
• {(0, 𝑬𝑖,𝑖 − 𝑬1,1) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 2 ≤ 𝑖 ≤ 𝑛}.

On the other hand, im(𝜄) is generated by

(𝐼𝑛, 𝐼𝑛) = (𝑬1,1, 𝑬1,1) +
∑𝑛
𝑖=2 (𝑬𝑖,𝑖 , 𝑬1,1) +

∑𝑛
𝑖=2 (0, 𝑬𝑖,𝑖 − 𝑬1,1) .

This shows that E1 = ker(𝜋)/im(𝜄) is a free module. Finally, let
E2 =M𝑛 (R) and E3 = R.

3.1.2 The maps. We next define the maps 𝑑1, 𝑑2, 𝑑3, 𝜖 , as follows:
• 𝜖 : E0 → I𝑛−2 (𝑀), 𝑁 ↦→ tr(𝑀∗𝑁 ),
• 𝑑1 : E1 → E0, (𝑁1, 𝑁2) ↦→ 𝑁1𝑀 −𝑀𝑁2,
• 𝑑2 : E2 → E1, 𝑁 ↦→ (𝑀𝑁, 𝑁𝑀), and
• 𝑑3 : E3 → E2, 𝑥 ↦→ 𝑥𝑀∗,

where for (𝑁1, 𝑁2) ∈ M𝑛 (R) ⊕M𝑛 (R), we denote by (𝑁1, 𝑁2) its
image under the canonical surjectionM𝑛 (R) ⊕ M𝑛 (R) ↠ E1.

Proposition 3.1. Let𝑀 be a matrix of homogeneous linear forms
in R. Assume I𝑛−2 (𝑀) is Cohen-Macaulay. With

E0, E1, E2, E3, 𝜖, 𝑑1, 𝑑2, 𝑑3 .

as defined above, the sequence

0→ E3
𝑑3−−→ E2

𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→ I𝑛−2 (𝑀) → 0

is a free resolution of I𝑛−2 (𝑀).

Proof. Since I = I𝑛−2 (𝑀) is Cohen-Macaulay, there exists an
I-regular sequence of length equal to the Krull dimension of I in
R. By [29, Thm. 10] and Proposition 2.7, the Krull dimension of I
is exactly 4. Then, the result follows from [14, Thm. 2.26]. □

3.2 The case 𝑟 = 𝑛 − 2
We give generators for the first syzygy module in the case 𝑟 = 𝑛− 2,
assuming I𝑛−2 (𝑀) is Cohen-Macaulay.

Theorem 3.2. Let 𝑀 = (𝑚𝑖, 𝑗 ) be a matrix of homogeneous linear
forms in R. Suppose that I𝑛−2 (𝑀) is Cohen-Macaulay. Then the
first syzygy module of 𝐹𝑛−2 (𝑀) is generated by:

(i)
∑𝑛
𝑘=1 (−1)𝑘+𝑗𝑚𝑘,𝑖𝑬𝑘,𝑗 for 𝑖 ≠ 𝑗 ;

(ii)
∑𝑛
𝑘=1 (−1)𝑖+𝑘𝑚 𝑗,𝑘𝑬𝑖,𝑘 for 𝑖 ≠ 𝑗 ;

(iii)
∑𝑛
𝑘=1 ((−1)𝑖+𝑘𝑚𝑘,𝑖𝑬𝑘,𝑖 − (−1)𝑘+1𝑚1,𝑘𝑬1,𝑘 ) for 1 ≤ 𝑖 ≤ 𝑛 − 1;

(iv)
∑𝑛
𝑘=1 ((−1) 𝑗+𝑘𝑚 𝑗,𝑘𝑬 𝑗,𝑘 − (−1)𝑘+1𝑚1,𝑘𝑬1,𝑘 ) for 2 ≤ 𝑗 ≤ 𝑛.

Furthermore, the syzygies described by Items (i), (ii), (iii) and (iv)
form a minimal generating set for the Syz(𝐹𝑛−2 (𝑀)) of size 2𝑛2 − 2.

Proof. By Proposition 2.3, ker(𝜖) is the first syzygy module of
the cofactors of 𝑀 . By Proposition 3.1, since I𝑛−2 (𝑀) is Cohen-
Macaulay, the Gulliksen-Negård complex is exact and ker(𝜖) =
im(𝑑1). The image im(𝑑1) is generated by the images of generators
for E1 under 𝑑1. Thus, by Section 3.1, the first syzygy module of
𝐹𝑛−2 (𝑀) is generated by the following syzygies. For 𝑖 ≠ 𝑗 ,

𝑑1
(
(𝑬𝑖, 𝑗 , 0)

)
= 𝑬𝑖, 𝑗𝑀 =

𝑛∑
𝑘=1

𝑚𝑘,𝑖𝑬𝑘,𝑗 . (1)

Similarly, for 𝑖 ≠ 𝑗 ,

𝑑1
(
(0, 𝑬𝑖, 𝑗 )

)
= 𝑀𝑬𝑖, 𝑗 =

𝑛∑
𝑘=1

𝑚 𝑗,𝑘𝑬𝑖,𝑘 . (2)

For any 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑑1
(
(𝑬𝑖,𝑖 , 𝑬1,1)

)
= 𝐸𝑖,𝑖𝑀 −𝑀𝑬1,1 =

𝑛∑
𝑘=1

𝑚𝑘,𝑖𝑬𝑘,𝑖 −𝑚1,𝑘𝑬1,𝑘 . (3)

Finally, for any 2 ≤ 𝑗 ≤ 𝑛,

𝑑1
(
(0, 𝑬 𝑗, 𝑗 − 𝑬1,1)

)
= 𝑀𝑬 𝑗, 𝑗−𝑀𝑬1,1 =

𝑛∑
𝑘=1

𝑚 𝑗,𝑘𝑬 𝑗,𝑘−𝑚1,𝑘𝑬1,𝑘 . (4)

Since the generators for I𝑛−2 (𝑀) taken in the Gulliksen-Negård
complex are the cofactors of 𝑀 rather than the (𝑛 − 1)-minors
of 𝑀 , we obtain Items (i) to (iv) by pulling back each of Eqs. (1)
to (4), respectively under the isomorphism 𝑀∗

𝑖, 𝑗
∈ I𝑛−2 (𝑀) ↦→

(−1) (𝑖+𝑗 )𝑀∗
𝑖, 𝑗
∈ I𝑛−2 (𝑀). There are 𝑛2 − 𝑛 syzygies described by

each of Item (i) and Item (ii), and 𝑛 − 1 syzygies described by each
of Item (iii) and Item (iv). This gives a total of 2𝑛2 − 2 syzygies.

We conclude by proving that these 2𝑛2 − 2 syzygies form a
minimal generating set for Syz(𝐹𝑛−2 (𝑀)). Let 𝑚1, . . . ,𝑚2𝑛2−2 ∈
Syz(𝐹𝑛−2 (𝑀)) denote the generating set given by Item (i), Item (ii),
Item (iii), Item (iv). Suppose that for some 1 ≤ 𝑖 ≤ 2𝑛2−2,𝑚𝑖 is gen-
erated by {𝑚1, . . . ,𝑚2𝑛2−2}∖{𝑚𝑖 }. Then we can write

∑
𝑗≠𝑖 𝑎 𝑗𝑚 𝑗 =

𝑚𝑖 for some 𝑎 𝑗 ∈ R. Since the𝑚 𝑗 are all homogeneous, this forces
𝑎 𝑗 ∈ k for all 𝑗 ≠ 𝑖 . Subsequently, 𝑎 𝑗 ∈ im(𝑑2) ∩k2𝑛2−2 for all 𝑗 ≠ 𝑖 .
Letting 𝑎𝑖 = 1, and taking 𝑁 ∈ 𝑑−1

2 ((𝑎1, . . . , 𝑎2𝑛2−2)), we find that
𝑀𝑁, 𝑁𝑀 ∈ M𝑛 (R) are matrices with entries in k. For 1 ≤ 𝑗 ≤ 𝑛,
the entries of the 𝑗-th row of𝑀𝑁 are members of the ideal gener-
ated by the 𝑗-th row of𝑀 . The entries of𝑀 are homogeneous linear
forms, so the only constant element contained in this ideal 0. Simi-
larly, for 1 ≤ 𝑗 ≤ 𝑛, the entries of the 𝑗-th row of 𝑁𝑀 are members
of the ideal generated by the 𝑗-th column of𝑀 , and an analogous
argument applies. Thus, 𝑎 𝑗 = 0 for each 1 ≤ 𝑗 ≤ 2𝑛2 − 2. □

One can easily construct an algorithm, named SyzCorankOne,
which, given a matrix𝑀 , computes the syzygies described in Theo-
rem 3.2.

Remark 3.3. In both Theorem 3.2 and SyzCorankOne(𝑀) we re-
quire that 𝐹𝑛−2 (𝑀) is Cohen-Macaulay. This is necessary, as with-
out it the Gulliksen-Negård complex need not be exact and sub-
sequently we cannot compute Syz(𝐹𝑛−2 (𝑀)) using its differential
maps. However, since 𝜖 is defined by 𝜖 (𝑁 ) = tr(𝑀∗𝑁 ), where
𝑀∗ = (𝑀∗

𝑖, 𝑗
) is the matrix of cofactors of𝑀 , a matrix 𝑁 = (𝑁𝑖, 𝑗 ) ∈

M𝑛 (R) is in the kernel of 𝜖 if and only if
∑

1≤𝑖, 𝑗≤𝑛 𝑁 𝑗,𝑖𝑀
∗
𝑖, 𝑗

= 0.
That is, ker(𝜖) corresponds to Syz(𝐹𝑛−2 (𝑀)) even if I𝑛−2 (𝑀) is
not Cohen-Macaulay. Moreover, even if I𝑛−2 (𝑀) is not Cohen-
Macaulay, the Gulliksen-Negård complex is still a complex. Thus,
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in all cases, im(𝑑1) ⊆ ker 𝜖 , so if I𝑛−2 (𝑀) is not Cohen-Macaulay,
Theorem 3.2 describes (and subsequently SyzCorankOne(𝑀) com-
putes) a generating set for a submodule of Syz(𝐹𝑛−2 (𝑀)).
Remark 3.4. If the entries of 𝑀 are not homogeneous, then as-
suming I𝑛−2 (𝑀) is Cohen-Macaulay, the syzygies computed by
Theorem 3.2 still generate Syz(𝐹𝑛−2 (𝑀)), but they need no longer
be a minimal generating set.

3.3 The general case
Theorem 3.5. Let 𝑛 ≥ 3 and let 1 ≤ 𝑟 ≤ 𝑛 − 2. Then there exists a
nonempty Zariski open set𝑈 ⊆ A𝑘𝑛2

k
such that for all 𝒂 ∈ 𝑈 , taking

𝑀 = 𝜑𝒂 (𝒜), the following holds: Let𝑀′ be the set of submatrices
of size (𝑟 + 2) × (𝑟 + 2) of𝑀 . For each matrix 𝑁 ∈ 𝑀′, let 𝑆 (𝑁 ) be
the set of syzygies of 𝐹𝑟 (𝑁 ) computed using Theorem 3.2. Then
Syz(𝐹𝑟 (𝑀)) =

⋃
𝑁 ∈𝑀 ′ 𝑆 (𝑁 ).

Proof. Let𝒰 be an 𝑛 × 𝑛 matrix of indeterminates over k. Let
𝒰
′ be the set of (𝑟 +2) × (𝑟 +2) submatrices of𝒰. For each𝒩 ∈ 𝒰′,

let 𝑆 (𝒩) be the set of syzygies of 𝐹𝑟 (𝒩) computed using Theo-
rem 3.2. By [39, Thm. 5.1], Syz(𝐹𝑟 (𝒜)) =

⋃
𝒩∈𝒰′ 𝑆 (𝒩). Thus, by

[29, Lem. 3], there is a nonempty Zariski open subset 𝑈1 ⊆ A𝑘𝑛
2

k
such that for all 𝒂 ∈ 𝑈1, the syzygies between the (𝑟 + 1)-minors of
𝜑𝒂 (𝒜) are those between the (𝑟 +1)-minors of each (𝑟 +2) × (𝑟 +2)
submatrix of 𝜑𝒂 (𝒜). We denote by𝒜

′ the set of (𝑟 + 2) × (𝑟 + 2)
submatrices of 𝒜. By Proposition 2.7, for each submatrix 𝑁 of 𝒜′,
there exists a nonempty Zariski open subset 𝑈𝑁 ⊆ A𝑘 ·𝑛

2

k
such

that for all 𝒂 ∈ 𝑈𝑁 , the ideal generated by the (𝑟 + 1)-minors of
𝑁 is Cohen-Macaulay, so that Theorem 3.2 applies. Thus, taking
𝑈 =

⋂
𝑁 ∈𝒜′ 𝑈𝑁 ∩𝑈1, the result follows. □

As a consequence, using SyzCorankOne(𝑀), we obtain an al-
gorithm SyzGen(𝑀, 𝑟 ) which constructs a set of generators for
Syz(𝐹𝑟 (𝑀)).
Remark 3.6. From Theorems 3.2 and 3.5, neither SyzGen(𝑀, 𝑟 ) nor
SyzCorankOne(𝑀) require any arithmetic k-operations.

Again in the statement of Theorem 3.5 we require that I𝑟 (𝑀)
is Cohen-Macaulay. This is necessary in order for Syz(I𝑟 (𝑀)) to
be computed via the syzygies of (𝑟 + 1)-minors of (𝑟 + 2) × (𝑟 + 2)
submatrices. If I𝑟 (𝑀) is not Cohen-Macaulay, Theorem 3.5 gives a
(possibly proper) subset of a generating set for Syz(I𝑟 (𝑀)).

Finally, we require that the entries of𝑀 be homogeneous linear
forms. Once again, the theorem holds if the entries are affine, as
long as I𝑟 (𝑀) satisfies the stated genericity assumption.

Note that no claim is made as to the minimality of the generating
set computed in Theorem 3.5. However, one can show that when
the entries of𝑀 are homogeneous, a minimal generating set can be
extracted from the set computed in Theorem 3.5 by throwing away
any element which differs by multiplication by −1 from another
element. This need no longer hold if the entries are affine.

4 DETERMINANTAL MATRIX-𝐹5 ALGORITHM
In this section, we use the syzygies returned by SyzGen(𝑀, 𝑟 ) to
avoid reductions to zero when running Algorithm 1. As explained
below, the following result will be instrumental.

Proposition 4.1 ([21, Lem. 6.4]). Let (𝑓1, . . . , 𝑓ℓ ) = 𝐹 ⊆ R𝑡 be
a system of homogeneous module elements. Let 𝐷 ∈ Z≥0, and let

𝐺 = 𝐺𝐷−min𝑖 {deg(𝑓𝑖 ) } be the elements up to degree𝐷−min𝑖 {deg(𝑓𝑖 )}
of a POT-Gröbner basis for Syz(𝐹 ). Then,
(1) If 𝜏𝑒𝑖 ∈ ltpot (𝐺), the row of ℳdeg(𝜏 )+deg(𝑓𝑖 ),𝑖 with signature
(𝑖, 𝜏) is a linear combination of rows with smaller signature.

(2) If a row with signature (𝑖, 𝜏) of ℳdeg(𝜏 )+deg(𝑓𝑖 ),𝑖 reduces to zero,
then 𝜏𝑒𝑖 is in the module generated by ltpot (𝐺).

Proof. Item 1 is simply Proposition 2.4. We turn to Item 2. Fix
min𝑖 {deg(𝑓𝑖 )} ≤ 𝑑 ≤ 𝐷 and 1 ≤ 𝑖 ≤ ℓ . Suppose that the row with
signature (𝑖, 𝜏) reduces to zero in ℳ̄deg(𝜏 )+deg(𝑓𝑖 ),𝑖 . Then there is
a linear dependency 𝑠1 𝑓1 + · · · + 𝑠ℓ 𝑓ℓ = 0. This corresponds to a
syzygy 𝑠 = 𝑠1𝑒1 + · · · + 𝑠ℓ𝑒ℓ ∈ Syz(𝐹 ) with ltpot (𝑠) = 𝜏𝑒𝑖 . Finally,

deg(𝑠𝑖 ) = 𝑑 − deg(𝑓𝑖 ) ≤ 𝐷 − deg(𝑓𝑖 ) ≤ 𝐷 −min
𝑖
{deg(𝑓𝑖 )}.

for each 1 ≤ 𝑖 ≤ ℓ . Thus ltpot (𝑠) = 𝜏𝑒𝑖 is in ⟨ltpot (𝐺)⟩. □

Using Proposition 4.1, in order to remove all reductions to zero
when running Algorithm 1 to compute a 𝐷-Gröbner basis for a
graded module 𝐹 ⊆ R𝑡 , we compute the leading terms of the el-
ements up to degree 𝐷 − min𝑓 ∈𝐹 {deg 𝑓 } of a Gröbner basis for
Syz(𝐹 ). We can compute them by running Algorithm 1 on a set
of chosen generators for Syz(𝐹 ) itself, with the appropriate de-
gree bound given by Proposition 4.1. However, if Syz2 (𝐹 ) ≠ {0},
then Proposition 4.1 once again shows that reductions to zero
will be encountered when computing the elements up to degree
𝐷 −min𝑓 ∈𝐹 {deg 𝑓 } of a Gröbner basis for Syz(𝐹 ).

When 𝑟 = 𝑛 − 2, the Gulliksen-Negård complex allows us to
explicitly compute generating sets for all higher syzygy modules.
Thus, we can avoid all reductions to zero when computing a 𝐷-
Gröbner basis for 𝐹𝑟 (𝑀). When 𝑟 < 𝑛 − 2, we can only compute a
generating set for the first syzygy module Syz(𝐹𝑟 (𝑀)), and thus
cannot efficiently remove all reductions to zero.

Now we are ready to describe an algorithm which exploits the
syzygies computed by SyzGen(𝑀, 𝑟 ) to compute a grevlex Gröbner
basis for 𝐹𝑟 (𝑀) without reductions to zero in degree 𝑟 + 2.

Algorithm 2 Determinantal-Matrix-𝐹5 (𝑀, 𝑟, 𝐷)
Input: An integer 1 ≤ 𝑟 ≤ 𝑛−2, an𝑛×𝑛matrix𝑀 of homogeneous

linear forms over k in (𝑛 − 𝑟 )2 variables such that I𝑟 (𝑀) is
Cohen-Macaulay, and a degree bound 𝐷 .

Output: A grevlex 𝐷-Gröbner basis for I𝑟 (𝑀).
1: 𝑆 ← SyzGen(𝑀, 𝑟 )
2: 𝑆 ′ ← Matrix-F5 (𝑆, 1, ∅)
3: 𝐺 ← Matrix-F5 (𝐹𝑟 (𝑀), 𝐷, 𝑆′)
4: return 𝐺

Proposition 4.2. Algorithm 2 terminates and is correct.

Proof. Termination follows from that of SyzGen(𝑀, 𝑟 ) and Al-
gorithm 1. To prove correctness, we need to show that the set 𝑆 ′ of
Line 2 is indeed a set of syzygies between the elements of I𝑟 (𝑀). By
Theorem 3.5, the set 𝑆 computed on Line 1 is a minimal generating
set for Syz(𝐹𝑟 (𝑀)). By the construction of this generating set, given
in Theorem 3.5, each element of 𝑆 is homogeneous of degree one.
Hence, according to Section 2.3.3, the set 𝑆 ′ consists of the elements
of degree one of a POT-Gröbner basis for Syz(𝐹𝑟 (𝑀)). □
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Remark 4.3. Both the number of rows and the number of columns
of the Macaulay matrix in degree one for the set 𝑆 on Line 2 of
Algorithm 2 is bounded by the number of rows of the Macaulay
matrix for 𝐹𝑟 (𝑀) in degree 𝑟 + 1. Therefore, asymptotically, the
arithmetic cost of Algorithm 2 is bounded by the arithmetic cost of
its final step, computing the Gröbner basis of 𝐹𝑟 (𝑀).

Proposition 4.4. Let𝑛 ≥ 3, let 1 ≤ 𝑟 ≤ 𝑛−2, let𝐷 = 𝑟 · (𝑛−𝑟 )+1,
and let 𝑘 = (𝑛 − 𝑟 )2. There exists a nonempty Zariski open set 𝑈 ⊆
A𝑘𝑛

2

k
such that for all 𝒂 ∈ 𝑈 , taking 𝑀 = 𝜑𝒂 (𝒜), upon running

Algorithm 2 with arguments𝑀, 𝑟, 𝐷 :

(1) a full grevlex Gröbner basis is returned; and
(2) for each 1 ≤ 𝑖 ≤

( 𝑛
𝑟+1

)2, the matrixℳ𝑟+2,𝑖 has full rank.

Proof. By [29], there exists a Zariski open subset 𝑈1 ⊆ A𝑘𝑛
2

k
such that the maximal degree of a polynomial in the reduced grevlex
Gröbner basis for I𝑟 (𝑀) is precisely 𝐷 . Let 𝑈2 be a nonempty
Zariski open subset of A𝑘𝑛

2

k
such that the results of Theorem 3.5

hold. Let𝑈 = 𝑈1 ∩𝑈2. Item 1 follows immediately from the degree
bound given in [29]. We turn to Item 2. By Proposition 4.1, Item 2,
it suffices to show that the leading terms of the set 𝑆 ′ of Line 2
consists of the elements of degree at most 𝑟 +2 of ltpot (Syz(I𝑟 (𝑀))).
This is immediate from Theorem 3.5 and Section 2.3.3. □

Remark 4.5. If we do not impose the genericity assumption on
I𝑟 (𝑀) Algorithm 2 will still return a 𝐷-Gröbner basis for I𝑟 (𝑀),
thoughℳ𝑟+2,𝑖 need no longer be full rank for all 1 ≤ 𝑖 ≤

( 𝑛
𝑟+1

)2.
If the entries of𝑀 are affine, by Remark 3.6, there are two possi-

bilities. First, SyzGen(𝑀, 𝑟 ) still returns a generating set for the first
syzygy module of 𝐹𝑟 (𝑀), and these may be used in the original 𝐹5
algorithm which works on affine input to avoid reductions to zero.
Alternatively, following [18, Ch. 8, § 2, Prop. 7], one can simply
homogenize 𝐹𝑟 (𝑀) with respect to a variable ℎ which is taken to be
grevlex smaller than all other variables of R, and specialize ℎ = 1
upon termination of Algorithm 2.

5 THE CASE 𝑟 = 𝑛 − 2
Now, we describe an altered version of the 𝐹5 algorithm which
computes a Gröbner basis for I𝑟 (𝑀) when 𝑟 = 𝑛 − 2 without any
reductions to zero. Note that Algorithm 2 does not require 𝑟 < 𝑛−2.
Thus, we could simply compute a Gröbner basis for I𝑟 (𝑀) using
Algorithm 2 when 𝑟 = 𝑛 − 2. However, only those reductions
to zero arising from syzygies of degree 𝑟 + 2 will be avoided. By
Proposition 4.1, any syzygies of degree 𝑑 > 𝑟 + 2 which cannot be
generated by the syzygies of degree 𝑟 +2 will manifest as reductions
to zero in the Macaulay matrices in degree 𝑑 .

5.1 Higher syzygy modules
By Proposition 3.1, the Gulliksen-Negård complex is a free reso-
lution of I𝑟 (𝑀) as soon as I𝑟 (𝑀) is Cohen-Macaulay. Thus, the
kernels of its differential maps are precisely the syzygy modules of
I𝑟 (𝑀). The map 𝑑3 is defined by 𝑑3 (𝑥) = 𝑥𝑀∗, where𝑀∗ is the ma-
trix of cofactors of𝑀 . The third syzygy module Syz3 (I𝑟 (𝑀)) is the
image of 𝑑3, and is thus free of rank 𝑛2 and principally generated
by the entries of𝑀∗.

Proposition 5.1. Let 𝑀 be an 𝑛 × 𝑛 matrix of homogenoeus
linear forms in R. Suppose I𝑛−2 (𝑀) is Cohen-Macaulay. In the R-
basis for ker(𝜋)/im(𝜄) given in Section 3.1, the second syzygy module
Syz2 (𝐹𝑟 (𝑀)) is generated by the following syzygies:

(i) For 2 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛 − 1,∑
𝑘≠𝑗

𝑚𝑘,𝑖 (𝐸𝑘,𝑗 , 0) +
∑
𝑘≠𝑖

𝑚 𝑗,𝑘 (0, 𝐸𝑖,𝑘 )

+𝑚 𝑗,𝑖

(
(𝐸 𝑗, 𝑗 , 𝐸1,1) + (0, 𝐸𝑖,𝑖 − 𝐸1,1)

)
.

(ii) For 2 ≤ 𝑖 ≤ 𝑛,∑
𝑘≠𝑛

𝑚𝑘,𝑖 (𝐸𝑘,𝑛, 0) +
∑
𝑘≠𝑖

𝑚𝑛,𝑘 (0, 𝐸𝑖,𝑘 )

−𝑚𝑛,𝑖

(
𝑛−1∑
𝑗=1
(𝐸 𝑗, 𝑗 , 𝐸1,1) +

𝑛−1∑
𝑗=2
(0, 𝐸 𝑗, 𝑗 − 𝐸1,1)

)
(iii) For 1 ≤ 𝑗 ≤ 𝑛 − 1,∑

𝑘≠𝑗

𝑚𝑘,1 (𝐸𝑘,𝑗 , 0) +
∑
𝑘≠1

𝑚 𝑗,𝑘 (0, 𝐸1,𝑘 ) +𝑚 𝑗,1 (𝐸 𝑗, 𝑗 , 𝐸1,1)

(iv) Finally,∑
𝑘≠𝑛

𝑚𝑘,1 (𝐸𝑘,𝑛, 0) +
∑
𝑘≠1

𝑚𝑛,𝑘 (0, 𝐸1,𝑘 )

−𝑚𝑛,1

(
𝑛−1∑
𝑗=1
(𝐸 𝑗, 𝑗 , 𝐸1,1) +

𝑛∑
𝑗=2
(0, 𝐸 𝑗, 𝑗 − 𝐸1,1)

)
Proof. The second syzygy module Syz2 (I𝑟 (𝑀)) is the image of

𝑑2, by Proposition 3.1. The map 𝑑2 is defined by

𝑑2 (𝑁 ) = (𝑀𝑁, 𝑁𝑀).

Taking 𝑬𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 to be the canonical R-basis forM𝑛 (R), a
basis for im(𝑑2) is given by {(𝑀𝑬𝑖, 𝑗 , 𝑬𝑖, 𝑗𝑀) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}. We can
express𝑀𝑬𝑖, 𝑗 and 𝑬𝑖, 𝑗𝑀 in the canonical R-basis forM𝑛 (R),

𝑀𝑬𝑖, 𝑗 =𝑚 𝑗,𝑖𝑬 𝑗, 𝑗 +
∑
𝑘≠𝑗

𝑚𝑘,𝑖𝑬𝑘,𝑗 ; 𝑬𝑖, 𝑗𝑀 =𝑚 𝑗,𝑖𝑬𝑖,𝑖 +
∑
𝑘≠𝑖

𝑚 𝑗,𝑘𝑬𝑖,𝑘 .

From this, we can express generators for Syz2 (I𝑟 (𝑀)) in the R-
basis for ker(𝜋)/im(𝜄). Doing so gives precisely Items (i), (ii), (iii),
and (iv). □

Using Proposition 5.1, one can easily construct an algorithm,
which we will call Syz2GenCorankOne(𝑀) which constructs the
set Syz2 (𝐹𝑛−2 (𝑀)). We use this algorithm in the next section to
design a dedicated 𝐹5-type algorithm which performs no reduction
to zerowhen computing a Gröbner basis ofI𝑛−2 (𝑀) whenI𝑛−2 (𝑀)
is Cohen-Macaulay and 𝑘 = 4.

Remark 5.2. Analogous to Remark 4.5, if I𝑛−2 (𝑀) is not Cohen-
Macaulay, the Gulliksen-Negård complex need not be a free resolu-
tion of I𝑛−2 (𝑀), though it is still a complex. Thus, even if I𝑛−2 (𝑀)
is not Cohen-Macaulay, im(𝑑2) ⊆ ker(𝑑1), so the syzygies described
by Proposition 5.1 are a subset of a generating set for the syzygies
between the generators for ker 𝜖 given by Theorem 3.2.
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5.2 A refined F5 algorithm
We combine Proposition 5.1, Theorem 3.2, and Proposition 4.1 to
give an algorithm which computes a grevlex Gröbner basis for
𝐹𝑛−2 (𝑀) without any reductions to zero, provided I𝑛−2 (𝑀) is
Cohen-Macaulay. In order to obtain the leading terms of the first
syzygy module, of 𝐹𝑛−2 (𝑀), we must know which rows will reduce
to zero when echelonizing the Macaulay matrices associated to the
first syzygy module in various degrees. By Proposition 4.1, the sig-
natures of these rows are precisely the leading terms of a Gröbner
basis for the second syzygy module in the appropriate degree.

Subsequently, applying Proposition 4.1 once again, the leading
terms of the first syzygy module in various degrees are precisely
the signatures of the rows which reduce to zero when echelonizing
the Macaulay matrices associated to 𝐹𝑛−2 (𝑀).

Algorithm 3 Determinantal-Corank-One-Matrix-𝐹5

Input: An integer 𝑛 ≥ 3, an 𝑛 × 𝑛 matrix of generic homogeneous
linear forms over k in 4 variables, and an integer 𝐷 ≥ 𝑛 − 1

Output: The elements up to degree 𝐷 of a grevlex Gröbner basis
for I𝑛−2 (𝑀).

1: 𝑆1 ← SyzCorankOne(𝑀)
2: 𝑆2 ← Syz2GenCorankOne(𝑀)
3: 𝑆 ′2 ← Matrix-F5 (𝑆2, 𝐷 − 𝑛, ∅)
4: 𝑆 ′1 ← Matrix-F5 (𝑆1, 𝐷 − 𝑛 + 1, 𝑆′2)
5: 𝐺 ← Matrix-F5 (𝐹𝑛−2 (𝑀), 𝐷, 𝑆′1)
6: return 𝐺

Proposition 5.3. Algorithm 3 terminates and is correct.

Proof. Termination is an easy consequence from the one of
SyzCorankOne(𝑀), Syz2GenCorankOne(𝑀), and Algorithm 1. For
correctness, it suffices to show that the set 𝑆 ′1 computed on Line 4
is indeed a set of syzygies of the polynomials in 𝐹𝑛−2 (𝑀). This
follows from Theorem 3.2. □

Proposition 5.4. Let 𝐷 = 2𝑛 − 3. Then there is a nonempty
Zariski open subset𝑈 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈 , upon running

Algorithm 3 with arguments 𝜑𝒂 (I𝑛−2 (𝒜)), 𝐷 ,
(1) a full grevlex Gröbner basis is returned; and
(2) for each 1 ≤ 𝑖 ≤ 𝑛2 and for each 𝑛 − 1 ≤ 𝑑 ≤ 2𝑛 − 3, the

matrixℳ𝑑,𝑖 is full rank.

Proof. By [29, Lem. 18], there is a Zariski dense subset 𝑈1 of
A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈1, the maximal degree of a polynoimal

in the reduced grevlex Gröbner basis of I𝑛−2 (𝑀) is 2𝑛 − 3. By
Proposition 2.7, there is a nonempty Zariski open subset 𝑈2 of
A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈2, the ideal 𝜑𝒂 (I𝑛−2 (𝒜)) is Cohen

Macaulay. Thus, taking𝑈 = 𝑈1 ∩𝑈2, we obtain Item 1.
We turn to Item 2. By Proposition 4.1, Item 2, it suffices to show

that the leading terms of the set 𝑆 ′1 computed on Line 4 consists of
the elements of degree at most 2𝑛 − 3 of ltpot (Syz(I𝑛−2 (𝑀))). This
is immediate from Theorem 3.2 and Section 2.3.3. □

6 COMPLEXITY IN THE CASE 𝑟 = 𝑛 − 2
Throughout this section we focus on the dimension zero case. Thus,
𝑘 = (𝑛 − 𝑟 )2 = 4. For a homogeneous ideal I ⊆ R, we take
HFI (𝑑) to be the Hilbert function of I. That is, for an integer 𝑑 ≥ 0,
HFI (𝑑) = dimk I𝑑 . Further, we take 𝐻I (𝑡) =

∑
𝑑 HFI (𝑑)𝑡𝑑 to be

the Hilbert series of I. We refer to [22, 1.9] for further details.
When 𝑟 = 𝑛 − 2, we can use the results of the previous section

to give explicit formulae for the coefficients of the Hilbert series
𝐻I𝑟 (𝑀 ) (𝑡). Subsequently, we can exactly compute the ranks of the
Macaulay matrices in each degree computed by the 𝐹5 algorithm,
and bound the complexity of computing the reduced grevlex Gröb-
ner basis of a matrix of generic homogeneous linear forms by that
of computing the row reduction of each of these matrices.

First, note that for any 1 ≤ 𝑑 ≤ 𝑟 , both the number of rows
and the number of columns of the Macaulay matrix in degree 𝑑
for the set 𝑆2 (resp. 𝑆1) computed by Algorithm 3 is bounded by
the number of rows of the Macaulay matrix in degree 𝑑 + 1 (resp.
𝑑 + 𝑟 + 1) for the set 𝑆1 (resp. 𝐹𝑛−2 (𝑀)). Thus, the arithmetic cost
of Algorithm 3 is bounded by the arithmetic cost of the final step,
computing the grevlex Gröbner basis for 𝐹𝑛−2 (𝑀).

Proposition 6.1. There exists a Zariski open set𝑈 ⊆ A4·𝑛2

k
such

that for all 𝒂 ∈ 𝑈 , the Hilbert series 𝐻𝜑𝒂 (I𝑟 (𝒜) ) (𝑡) for 𝜑𝒂 (I𝑟 (𝒜))
is given by:

2𝑟+1∑︁
𝑑=𝑟+1

(
𝑛2

(
𝑑 − 𝑟 + 2

3

)
− (2𝑛2 − 2)

(
𝑑 − 𝑟 + 1

3

)
+ 𝑛2

(
𝑑 − 𝑟

3

))
𝑡𝑑 . (5)

Proof. Let𝑈 be as in Proposition 5.4. IfM is a free R-module
of rank 𝑡 , then the monomials ofM of degree 𝑑 form a basis for
the finite-dimensional k-vector space of homogeneous elements of
degree𝑑 ofM. Thus, HFM (𝑑) = 𝑡 ·

(𝑘+𝑑−1
𝑑−1

)
. The description of each

free module in the Gulliksen-Negård complex given in Section 3.1
gives rise to

rk E0 = #𝐹𝑛−2 (𝑀) =
( 𝑛
𝑛−1

)2
= 𝑛2, rk E1 = 2𝑛2 − 2

rk E2 = 𝑛2, rk E3 = 1

Thus, by [22, Thm. 1.13], HFI𝑛−2 (𝑀 ) (𝑑) =
∑3
𝑖=0 (−1)𝑖 HFE𝑖 (𝑑),

which equals 𝑛2 (𝑑−𝑟+2
3

)
− (2𝑛2−2)

(𝑑−𝑟+1
3

)
+𝑛2 (𝑑−𝑟

3
)
−

(𝑑−𝑟−1
3

)
. □

In the following proposition, we take

ℬ =

2𝑟+1∑︁
𝑑=𝑟+1

𝑛2
(
𝑑 − 𝑟 + 2

3

)
− (2𝑛2 − 2)

(
𝑑 − 𝑟 + 1

3

)
+ 𝑛2

(
𝑑 − 𝑟

3

)
.

Proposition 6.2. There is a Zariski dense subset 𝑈 of A4·𝑛2

k
such

that for all 𝒂 ∈ 𝑈 , the arithmetic cost of computing the reduced
grevlex Gröbner basis for 𝜑𝒂 (I𝑛−2 (𝒜)) using Algorithm 3 is in

𝑂

(
ℬ

𝜔−1 (2𝑟+5
5

) )
= 𝑂

(
𝑛4(𝜔−1) (2𝑛

3
) )

.

Proof. Take 𝑈 as in Proposition 6.1. Fix 𝒂 ∈ 𝑈 and let 𝑀 =

𝜑𝒂 (I𝑛−2 (𝒜)). The ideal I𝑛−2 (𝑀) is homogeneous, so the complex-
ity of computing a grevlex Gröbner basis for I𝑛−2 (𝑀) is bounded
by the complexity of reducing the intermediate Macaulay matrices
encountered in the matrix-𝐹5 algorithm. The coefficient on 𝑡𝑑 in the
Hilbert series Eq. (5) gives the rank of theMacaulay matrix of 𝐹𝑟 (𝑀)
in degree 𝑑 . The Macaulay matrices computed in Algorithm 3 have
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full row rank, allowing for the use of any echelonization algorithm
when computing ℳ̄𝑑,𝑖 . Hence, the result follows from the com-
plexity of computing the reduced row echelon form [50, Sec. 2.2]
(see also [37, App. A]) and the fact that the number of columns in
the Macaulay matrix in degree 2𝑛 − 3, the maximal degree of a
polynomial in the grevlex Gröbner basis of I𝑟 (𝑀), is the number
of monomials of degree 2𝑛 − 3 in k[𝑥1, . . . , 𝑥4]. □

Asymptotically, the bound given in [29, Thm. 20] is in𝑂
(
𝑛5𝜔+2)

whereas that given by Proposition 6.2 is in 𝑂
(
𝑛4𝜔−1) .

7 EXPERIMENTAL RESULTS
Here we present some experimental results on numbers of reduc-
tions to zero in our refinements of the 𝐹5 algorithm compared to
the standard 𝐹5 algorithm. The systems used for these results were
obtained by building square matrices of homogeneous linear forms
with random coefficients over k = F65521. This field is large enough
that the genericity assumptions necessary for our results to hold
do so with high probability when taking random coefficients.

All Gröbner basis computations were performed using an imple-
mentation of both standard 𝐹5 and our refinements to 𝐹5 written
in SageMath (see [51]) using the FFLAS-FFPACK library (see [32])
for the linear algebra subroutines. When 𝑟 = 𝑛 − 2, we compute a
full Gröbner basis for 𝐹𝑛−2 (𝑀), whereas when 𝑟 < 𝑛 − 2, we only
compute a Gröbner basis of 𝐹𝑟 (𝑀) up to degree 𝑟 + 2, as past this
degree our algorithm performs no differently to standard 𝐹5.

When 𝑟 = 𝑛 − 2, all reductions to zero are avoided and thus all
Macaulay matrices are full rank. By virtue of Proposition 2.4, if a
row of ℳ𝑑,𝑖 reduces to zero, then all multiples of this row in ℳ𝑑 ′,𝑖
for 𝑑′ > 𝑑 reduce to zero as well, and the standard 𝐹5 algorithm
avoids these rows. Note however, that there are a significant number
of reductions to zero which do not arise from reductions to zero
in lower degree, as evidenced by the discrepancy between the size
of the generating set for Syz(𝐹𝑛−2 (𝑀)), which is 2𝑛2 − 2 (when
𝑟 = 𝑛 − 2) and the number of reductions to zero encountered by the
standard 𝐹5 algorithm.

Note also that by [29, Cor. 19], the largest degree of a polynomial
in the reduced grevlex Gröbner basis for I𝑛−2 (𝑀) is 2𝑛 − 3, which
is strictly smaller than 2(𝑟 + 1) = 2𝑛 − 2. Thus, Proposition 2.5 is
never used when running either the standard 𝐹5 algorithm, or our
refined algorithm on I𝑛−2 (𝑀).

When 𝑟 < 𝑛 − 2, we avoid all reductions to zero in the Macaulay
matricesℳ𝑟+2,𝑖 for all 1 ≤ 𝑖 ≤

( 𝑛
𝑟+1

)2. As the data in Table 1 shows,
this already allows us to avoid a significant number of reductions to
zero. In fact, in all higher corank cases, over half of the reductions
to zero overall appear in degree 𝑟 + 2. The number of reductions to
zero in degree 𝑟 + 2 (and thus the size of a minimal generating set
for Syz(I𝑟 (𝑀))) appears to be(

𝑛

𝑟 + 2

)2 (
2(𝑟 + 2) (𝑟 + 1)

𝑛 − 𝑟 − 1
+ 2𝑟 + 2

)
.

From this quantity one could derive a refined estimate of the com-
plexity of Algorithm 2.

Note that generically, in the case 𝑟 < 𝑛 − 2, the largest degree
of a polynomial appearing in the reduced grevlex Gröbner basis
for I𝑟 (𝑀) is 𝑟 · (𝑛 − 𝑟 ) + 1 again by [29, Cor. 19]. Thus, in this case,
Proposition 2.5 is used as soon as the degree exceeds 2(𝑟 + 1).

Finally, we observe that the speedups which can already be
achieved using the results of this paper, within our software frame-
work, increase when 𝑛 grows and 𝑛 − 𝑟 remains fixed. In the case
where 𝑛 − 𝑟 = 2 we obtain speedup which are close to 10. This
clearly indicates the potential of these results with respect to prac-
tical computation times.

Table 1: Reductions to zero in standard 𝐹5 (none in determinantal-
𝐹5) as well as ratio of timings for standard 𝐹5 compared to
determinantal-𝐹5, when computing a 𝐷-Gröbner basis for the sys-
tem of (𝑟 + 1)-minors of a generic 𝑛 × 𝑛 matrix of homogeneous
linear forms in 𝑘 variables over k = F65521.

𝑛 𝑟 𝑘 𝐷 Red. to 0
(Std. 𝐹5)

(Std. 𝐹5)
(Det. 𝐹5)

4 2 4 5 56 0.11
5 3 4 7 129 0.08
6 4 4 9 239 0.43
7 5 4 11 414 0.69
8 6 4 13 663 1.46
9 7 4 15 959 1.65
10 8 4 17 1387 2.26
11 9 4 19 1871 3.07
12 10 4 21 2525 3.99
13 11 4 23 3181 4.94
14 12 4 25 4032 6.00
15 13 4 27 4977 6.03
16 14 4 29 6213 7.93
17 15 4 31 7515 7.22
18 16 4 33 8845 7.99
19 17 4 35 10544 8.65
20 18 4 37 12969 10.59
4 1 9 3 160 1.27
5 2 9 4 450 1.77
6 3 9 5 1008 2.04
7 4 9 6 1960 2.16
8 5 9 7 3456 2.40
9 6 9 8 5670 2.50
5 1 16 3 800 1.34
6 2 16 4 3150 1.59
7 3 16 5 9408 1.72
6 1 25 3 2800 1.28
7 2 25 4 14700 1.39
7 1 36 3 7840 1.22
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