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Abstract. Let M be an n × n matrix of homogeneous linear forms over a
field k. If the ideal In−2(M) generated by minors of size n − 1 is Cohen-
Macaulay, then the Gulliksen-Negård complex is a free resolution of In−2(M).
It has recently been shown that by taking into account the syzygy modules for
In−2(M) which can be obtained from this complex, one can derive a refined
signature-based Gröbner basis algorithm DetGB which avoids reductions to
zero when computing a grevlex Gröbner basis for In−2(M). In this paper,
we establish sharp complexity bounds on DetGB. To accomplish this, we
prove several results on the sizes of reduced grevlex Gröbner bases of reverse
lexicographic ideals, thanks to which we obtain two main complexity results
which rely on conjectures similar to that of Fröberg. The first one states that,
in the zero-dimensional case, the size of the reduced grevlex Gröbner basis of
In−2(M) is bounded from below by n6 asymptotically. The second, also in the
zero-dimensional case, states that the complexity of DetGB is bounded from
above by n2ω+3 asymptotically, where 2 ≤ ω ≤ 3 is any complexity exponent
for matrix multiplication over k.

1. Introduction

The MinRank problem. Let k be a field and let k be an algebraic closure of k. Let
R = k[x1, . . . , xk] for some k ∈ Z>0. Let M be an m× n matrix whose entries are
homogeneous polynomials in R of degree d. Without loss of generality, suppose
m ≥ n. Let r ∈ Z>0 with r < n. We denote by Ir+1(M) ⊂ R the ideal generated
by the collection of all minors of size (r + 1) of M , that is, by all determinants of
submatrices of M of size (r+1)×(r+1). Note that for any point x ∈ Vk(Ir+1(M)),
the evaluation of each entry of M at x yields a matrix M(x) with entries in k whose
rank is at most r. Ideals of the form Ir+1(M) are called determinantal ideals and
have been well-studied (see e.g. [BV88]). For d = 1, meaning that the entries of M
are linear forms, the problem of computing V (Ir+1(M)) is known as the MinRank
problem. For d ≥ 1, the problem is known as the generalized MinRank problem.
The MinRank problem is known to be NP-hard (see [BFS99]).
The MinRank problem lies at the heart of many cryptographic schemes (e.g. [Cou01,
Pat96, KS99]) and in many cases, it is possible to reduce the problem of breaking
a cryptographic scheme to specific structured instances of the MinRank problem
(see e.g. [FLP08, DS05, Beu22, BBC+22, BBB+20, BBC+20]).
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Outside of the realm of cryptography, many problems in effective algebraic geometry
can be modeled as (generalized) MinRank instances. Problems such as those of
computing critical points (see e.g. [FSS12, Spa14]), polynomial optimization (see
e.g. [GSED14, BGHS14]), quantifier elimination (see e.g. [HS09, HS12, LS21b]), and
others in real algebraic geometry (see e.g. [SS03, BGHP05, BGH+10, SS17, BS15,
LS21a]) can all be viewed as instances of the (generalized) MinRank problem.

Gröbner basis algorithms. One possible technique to solve the MinRank problem
is to solve the polynomial system of (r + 1)-minors of M . Such systems, known
as determinantal systems, are well-studied and highly structured. We refer the
reader to [BV88, Las78, BCRV22] for a wealth of general theory about determi-
nantal systems. This structure suggests that existing general polynomial systems
solving techniques could be optimized in search of more efficient algorithms to solve
the MinRank problem. For example in [HSEDSV21], specific properties of determi-
nantal systems are taken into account to present adapted homotopy continuation
techniques for solving determinantal systems.
In this paper, we investigate Gröbner basis techniques for solving determinantal
polynomial systems. Many improvements have been made to the original general-
purpose Gröbner basis algorithm given by Buchberger in his thesis [Buc65]. Per-
haps one of the most important has been the introduction of linear algebra via
Macaulay matrices to perform S-pair reduction in the F4 algorithm given by Faugère
in [Fau99]. The other critical improvement has been the identification and elimi-
nation of reductions to zero by way of a family of criteria, culminating in the F5

algorithm given by Faugère in [Fau02]. The F5 algorithm uses at its core a simple
data structure called signatures, which keeps track of the way the Gröbner basis
was computed. Since the introduction of the F5 algorithm, many signature-based
Gröbner basis algorithms have been developed. We refer to [EF16] for a survey of
such algorithms.

Arithmetic complexity. We work with the arithmetic complexity model, counting
basic arithmetic operations in k to estimate the complexity of Gröbner basis algo-
rithms. Under this model of computation, the complexity of computing Gröbner
bases using a linear-algebra based algorithm boils down to that of echelonizing
Macaulay matrices over k. One key requirement in order to obtain reasonable com-
plexity estimates is sharp upper bounds on the degrees of the polynomials compris-
ing the output Gröbner basis. For (non-determinantal) polynomial systems satis-
fying certain genericity properties, such bounds have been given in [Laz83, Giu84].
For determinantal ideals, such bounds have been given in [FSS10, FSS13], together
with corresponding complexity analyses which simply compute the cost of eche-
lonizing the appropriate Macaulay matrices. In these works, the impact of the
specific structure of determinantal ideals on the shapes of the Macaulay matrices
is not taken into account. In particular, reductions to zero arising from the struc-
ture of determinantal ideals are not studied or exploited. These reductions to zero
are in direct correspondence with elements in the syzygy module of the considered
determinantal ideal. In [GNSED23], these syzygy modules are described and used
to introduce new criteria which avoid reductions to zero when computing Gröbner
bases of determinantal ideals. In particular, when r = n − 2, m = n, and under
suitable genericity assumptions, all reductions to zero are avoided. This implies
that all linearly redundant rows in the Macaulay matrices can be pruned a priori,
leading to faster echelonization. A subsequent complexity analysis is given, which
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takes into account these reductions to zero, but still does not exploit the specific
structure of the Macaulay matrices encountered.
Main results. In this paper, we consider the comaximal case for square matrices of
linear forms. That is, we take d = 1, r = n − 2, and m = n. The codimension of
Ir+1(M) is k − (n − r)2 (see e.g. [FSS13, Theorem 10]). We fix therefore k = 4,
so that In−2(M) is of dimension zero. In this setting, under certain genericity
assumptions which we make explicit, and assuming certain conjectures related to
the generic grevlex staircase of In−2(M), we give two main results.
First, we provide an exact formula for the size of the reduced grevlex Gröbner basis
of In−2(M) (see Theorem 8.3 for a precise statement and proof):

Under certain genericity assumptions and assuming that the ideal
In−2(M) is reverse lexicographic, the number of elements of k in
the dense representation for the reduced grevlex Gröbner basis of
In−2(M) is asymptotically bounded from below by n6.

Second, we give a sharp complexity analysis of the algorithm [GNSED23, Algo-
rithm 3]-which we call DetGB-taking into account the specific structure of the
Macaulay matrices encountered to obtain our complexity bound (see Theorem 8.10
for the precise statement and proof):

Under certain genericity assumptions and assuming that the ideal
In−2(M) is reverse lexicographic, the number of arithmetic opera-
tions in k performed by [GNSED23, Algorithm 3] when computing
the reduced grevlex Gröbner basis for In−2(M) is in O(n2ω+3).

To accomplish both of these analyses, we establish results on the structure of the
grevlex staircase of a well-studied class of ideals known as reverse lexicographic
ideals. In Section 6, we rely on the well-studied notion of Lefschetz properties (see
[HMM+13b]) to relate Conjecture 5.5 which states that In−2(M) is generically
reverse lexicographic to a long-standing conjecture of Goto (see [Got74]).
The statement and proof of Theorem 8.3 is obtained by simply determining the
size of the output reduced grevlex Gröbner basis. In particular, we use a dense
representation of the polynomials in the Gröbner basis and provide a formula for
the number of nonzero coefficients appearing in this dense representation.
Inspired by the sharp complexity analysis of F5 in the case of a regular sequence in
simultaneous Noether position given in [BFS15], we again use our results on on the
structure of the grevlex staircases of reverse lexicographic ideals to establish our
complexity upper bound, stated in Theorem 8.10, assuming Conjecture 5.5. Our
upper bound arises by first giving an explicit estimate for the number of arithmetic
operations over k performed in [GNSED23, Algorithm 3], then analyzing the asymp-
totics of this formula. We conclude by showing that the asymptotic analysis we
perform is sharp, by comparing it to the explicit estimate we give. The upper bound
we obtain compares favorably to the bound O(n4ω+2) of [FSS13, Theorem 20].

2. Preliminaries

Throughout, we denote by R the ring k[x1, . . . xk], by Mon(R) the set of all mono-
mials ofR, and by Mond(R) the set of monomials of degree d ofR. We use the stan-
dard multi-index notation, whereby for some k-tuple of integers α = (α1, . . . , αk) ∈
Zk
≥0, we abbreviate xα = xα1

1 · · ·x
αk

k . We use As, to denote the affine space of
dimension s over k, viewed as an affine variety with the Zariski topology.
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2.1. Gröbner bases. A wealth of general theory about Gröbner bases can be
found, for example, in [CLO05] and the references therein. We recall here only
what is necessary for our purposes.
We denote by ≻ an admissible monomial order on R. That is, ≻ is a total order
on Mon(R) such that if σ, τ are monomials with σ ≻ τ , then for any monomial
m ∈ Mon(R), mσ ≻ mτ , and for which there is no infinitely decreasing sequence
of monomials. Given a polynomial f ∈ R, we use LM≻(f) to denote the leading
monomial of f with respect to ≻, and LT≻(f) to denote the leading term of f with
respect to ≻, that is, LM≻(f) multiplied by its coefficient in f . Given a set F ⊆ R
of polynomials, we define the sets

LM≻(F ) := {LM≻(f) : f ∈ F} and LT≻(F ) := {LT≻(f) : f ∈ F}.

When ≻ is clear from the context, we remove it as a subscript.
We use ei to denote the standard i-th basis element of the free R-module Rm. A
monomial of Rm is an element of Rm of the form xαei, where xα ∈ Mon(R) and
ei is some standard basis element of Rm. We use Mon(Rm) to denote the set of all
monomials of Rm.
The free module Rm carries a standard grading induced by the grading by degree
on R. That is, we can write Rm =

⊕∞
d=0Rm

d , where

Rm
d = {f1e1 + · · ·+ fmem : deg(fi) = d for all 1 ≤ i ≤ m}

is the additive group of homogeneous elements of degree d. Note that implicitly,
we take 0 ∈ Rm

d for all d ≥ 0. With respect to this grading, a monomial xαei ∈
Mon(Rm) has degree deg(xα). We use Mond(Rm) to denote the set of all monomials
of Rm of degree d.
The monomial order ≻ on R induces the term over position order on Rm defined as
follows: for xαei, xβej in Mon(Rm), xαei ≻TOP x

βej if and only if either xα ≻ xβ

or xα = xβ and i > j. We likewise extend the leading term and leading monomial
notation from R to Rm, so that for f ∈ Rm, LM≻TOP

(f) is the leading monomial of
f and LT≻TOP

(f) is its leading term. Analogously, for a subset F ⊆ Rm, we denote
LM≻TOP

(F) = {LM≻TOP
(f) : f ∈ F} and LT≻TOP

(F) = {LT≻TOP
(f) : f ∈ F}.

Given f1, . . . , fs ∈ Rm, we denote by ⟨f1, . . . , fs⟩ the submodule of Rm generated
by f1, . . . , fs.
If f1, . . . , fs ∈ Rm are all homogeneous elements, then the module F = ⟨f1, . . . , fs⟩
is itself graded. In this setting, we denote by Fd the additive group of homogeneous
elements of degree d of F.

Definition 2.1 (Gröbner basis, [CLO05, Chapter 5, Definition 2.6]). Let f1, . . . , fs
in Rm and let F be the submodule of Rm generated by f1, . . . , fs. A finite set
G ⊆ F is called a ≻TOP-Gröbner basis of F if ⟨LM≻TOP

(G)⟩ = LM≻TOP
(F).

Suppose f1, . . . , fs are homogeneous elements of Rm. Then F is itself a graded
module. In this case, for a given integer D, a finite set G ⊆ F is called a (D,≻TOP)-
Gröbner basis of F if G forms the elements of degree at most D of a ≻TOP-Gröbner
basis of F.

Remark 2.2. If G is a ≻TOP-Gröbner basis of a submodule F ⊆ Rm, then ⟨G⟩ = F
(see [CLO05, Chapter 5, Proposition 2.7(b)]).

2.2. Macaulay matrices. We recall here the basic construction of Macaulay ma-
trices for a system of homogeneous elements of Rm.
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Definition 2.3. Let f = (f1, . . . , fs) ⊆ Rm be homogeneous elements and for each
1 ≤ i ≤ s, let di = deg fi . For a given integer d ≥ min1≤i≤s di, the Macaulay
matrix in degree d with respect to ≻TOP,Md,≻(f) is constructed as follows:

• its columns are indexed by Mond(Rm), ordered in decreasing order with
respect to ≻TOP,

• and for each monomial τ ∈ Mond−di
(R), one inserts into the matrix a single

row whose entry in the column indexed by the monomial σ is the coefficient
of σ in τ fi.

The rows of Md,≻(f) are naturally interpreted as module elements, and we will
freely refer to them as such. Note that these rows form a basis for Rm

d as a finite-
dimensional k-vector space.
We denote by M̃d,≻(f) the reduced row-echelon form ofMd,≻(f).

Theorem 2.4. Let f = (f1, . . . , fs) ⊆ Rm be homogeneous elements. Then the
rows of M̃d,≻(f), form the elements of degree d of a ≻TOP-Gröbner basis for the
module generated by f .

Proof. Let F be the module generated by f . Let g ∈ F. Since f1, . . . , fs are
homogeneous, the module F is graded. Thus, there exist some g1, . . . ,gt ∈ F such
that for each 1 ≤ i ≤ t, gi is homogeneous of degree i and g = g1 + · · · + gt.
For each 1 ≤ i ≤ t, the rows of M̃i,≻(f) form a basis for Fi. Therefore, for each
1 ≤ i ≤ t, there exist some cj ∈ k such that

gi =

dimk(Fi)∑
j=1

cjhj

where the module elements hj are the (nonzero) rows of M̃i,≻(f). Since M̃d,≻(f)
is in row echelon form, the leading monomials of the hj are pairwise distinct.
Using a natural generalization of [CLO15, Chapter 2, Lemma 8(ii)] to the setting
of modules, there exists, for each 1 ≤ i ≤ t, some 1 ≤ j ≤ dimk(Fi) such that
LM≻TOP

(gi) = LM≻TOP
(hj). Now since the degrees of the gi are pairwise distinct,

using once again a natural generalization of [CLO15, Chapter 2, Lemma 8(ii)], there
exists some 1 ≤ i ≤ t such that LM≻TOP

(g) = LM≻TOP
(gi). □

Henceforth, we fix ≻ to be the graded reverse lexicographic (grevlex) order. When
f is clear from context, Md,≻(f) and M̃d,≻(f) will be denoted by Md and M̃d

respectively.

2.3. Hilbert series. Since the complexity of computing Gröbner bases is governed
by that of echelonizing Macaulay matrices, understanding the sizes of these matrices
is key in our complexity analysis. Hilbert series of graded modules encode precisely
this information. Much general theory of Hilbert functions, polynomials, and series
can be found, for example, in [CLO05, Chapter 6, Section 4].

Definition 2.5. Given homogeneous elements f1, . . . , fs ∈ Rm, the Hilbert function
of the module F generated by (f1, . . . , fs) is defined by

HFF(d) = dimk(Fd).
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The Hilbert series of F is the generating series of the Hilbert function of F. That
is,

HF(t) =
∑
d≥0

HFF(d)t
d.

Proposition 2.6 ([BH98, Corollary 4.1.8]). Let F ⊆ Rm be a graded module of
Krull dimension zero. Then HRm/F(t) is a polynomial.

2.4. Free resolutions. Free resolutions are a fundamental construction in com-
mutative algebra. Many general facts about free resolutions can be found in [Eis95,
III] and [CLO15, Chapter 6]. Again, we recall below only what we need for our
purposes, and follow closely the exposition given in [GND24, Section 2]
Let F be a finitely generated R-module. An exact sequence

· · · ∂j+1−−−→ Ej
∂j−→ · · · ∂2−→ E1

∂1−→ E0
ϵ−→ F→ 0

is a left resolution of F. The maps ∂i are boundary homomorphisms, and the map
ϵ is an augmentation homomorphism. If for each i, the module Ei is free, then
the resolution is a free resolution. For the sake of brevity, we will often refer to
a resolution as above simply by (E•

ϵ−→ F, ∂•). We call sup{i ∈ Z : Ei ̸= 0} the
length of the resolution (E•

ϵ−→ F, ∂•). Note that the length of (E•
ϵ−→ F, ∂•) could

be infinity. Free resolutions of finite length are finite free resolutions.

Theorem 2.7 (Hilbert’s syzygy theorem, [Eis95, Corollary 19.7]). Let F be a
finitely generated R-module. There exists a free resolution (E•

ϵ−→ F, ∂•) of length
at most k.

When F is a graded module overR, it possesses a free resolution (E•
ϵ−→ F, ∂•) where

each free module Ei is graded in such a way that the boundary maps ∂i and the
augmentation map ϵ are graded R-module homomorphisms. In this setting, those
free resolutions (E•

ϵ−→ F, ∂•) such that the ranks of each of the Ei are minimal are
minimal free resolutions.
Let (E•

ϵ−→ F, ∂•) be a free resolution of F. Upon fixing a set of generators
(f

(0)
1 , . . . , f

(0)
s0 ) for F and sets of generators (f

(i)
1 , . . . , f

(i)
si ) for each im ∂i, we can

define, for each i, the i-th syzygy module of (f1, . . . , fs), as follows:

Syzi(F) = {(g1, . . . , gsi) ∈ Rsi : g1f
(i)
1 + · · ·+ gsif

(i)
si = 0}.

Remark 2.8. The way we define syzygy modules here is quite ad-hoc. In par-
ticular, as defined here, the syzygy modules of a given module F depend on the
choices of a free resolution of F and generating sets for the images of each of the
boundary homomorphisms in the chosen free resolution. In our setting this suffices,
since we consider only a single free resolution — the Gulliksen-Negård complex —
and take explicit generating sets for the images of the boundary homomorphisms
from [GNSED23, Theorem 9] and [GNSED23, Proposition 19].

The connection between free resolutions and Hilbert series is elucidated in the
following corollary.

Corollary 2.9. [CLO05, Theorem 4.4] Let F be a finitely generated graded R-
module, and let (E•

ϵ−→ F, ∂•) be a finite graded free resolution of F of length ℓ. For
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any 1 ≤ i ≤ ℓ, let si = rk(Ei) and write Ei =
⊕si

j=1R
(
−d(j)i

)
. Then

HFF(d) =

ℓ∑
i=0

(−1)i
 si∑

j=1

(
k + d− d(j)i − 1

k − 1

) .

3. Genericity

We begin by fixing a notion of genericity for determinantal ideals on which we
will rely to give subsequent results regarding the structure of Gröbner bases of
determinantal ideals and the complexity of computing them.
If M is an n×n matrix over any ring A and 1 ≤ r < n, we will denote by Ir+1(M)
the ideal generated by the (r + 1)-minors of M . We use the notation of [FSS13,
Section 2] to formalize various notions of genericity.
For some integer d ∈ Z>0, we call a polynomial of the form

f =
∑

τ∈Mond(R)

a(τ)τ ∈ R
[{

a(τ) : τ ∈ Mond(R)
}]

a generic homogeneous polynomial of degree d.
In what follows, we use A d

n to denote the n × n matrix of generic homogeneous
polynomials of degree d, whose i, j entry is

fij =
∑

τ∈Mond(R)

a
(τ)
ij τ ∈ R

[{
aij

(τ) : τ ∈ Mond(R)
}]

.

For a point a =
(
a
(τ)
ij

)
∈ A(

k+d−1
k−1 )·n2

we will denote by ϕa the specialization map

ϕa : R
[{

aij
(τ) : τ ∈ Mond(R)

}]
→ R

a
(τ)
ij 7→ a

(τ)
ij .

By abuse of notation, we will also use ϕa
(
A d

n

)
to denote the matrix (over R) whose

entries are simply the images of the entries of A d
n under ϕa.

A map
P : {Ideals of R} → {true, false}

is called a property.

Definition 3.1. A property P is (k, r, n, d)-generic if there exists a nonempty
Zariski open subset U ⊆ A(

k+d−1
k−1 )·n2

such that for all a ∈ U ,

P
(
Ir+1

(
ϕa
(
A d

n

)))
= true.

The following proposition is a fundamental result on determinantal ideals.

Proposition 3.2. Let CM be the property given by

CM(I) =

{
true if I is Cohen-Macaulay
false otherwise

Then for any n, d ∈ Z>0, r < n, CM is ((n− r)2, r, n, d)-generic.

Proof. By [BV88, Theorem 2.5], the depth of Ir+1

(
ϕa(A d

n )
)

is at most (n − r)2.
By [FSS13, Theorem 10], there exists a Zariski open subset U ⊆ A(

k+d−1
k−1 )·n2

such
that for all a ∈ U , Ir+1

(
ϕa
(
A d

n

))
has codimension (n − r)2, and is therefore

Cohen-Macaulay. □
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4. The Hilbert series of determinantal ideals

One of the key inputs into our complexity analysis is the Hilbert series of de-
terminantal ideals. Here, we give explicit formulæ for the Hilbert functions of
determinantal ideals in the case r = n − 2, under certain genericity assumptions.
We accomplish this by analyzing a complex associated to these ideals called the
Gulliksen-Negård complex, which under suitable genericity assumptions turns out
to be a free resolution. This allows us to obtain the Hilbert series’ we require by
computing the ranks of the component modules.

4.1. The complex of Gulliksen and Negård. We begin by recalling the con-
struction of the complex of Gulliksen and Negård. This complex was originally
given in [GN72]. A detailed exposition of this complex can be found in [BV88,
Chapter 2, Section D]. We reproduce here only what is necessary to obtain the
Hilbert series’ we require.
In this section, we fix n ∈ Z, n ≥ 3. Let Mn(R) be the set of n× n matrices over
R. The set Mn(R) carries a natural R-module structure, under which it is free of
rank n2. We will denote by In the identity matrix in Mn(R).
Consider the zero sequence

R ι−→Mn(R)⊕Mn(R)
π−→ R

where ι(x) = (xIn, xIn) and π(U, V ) = trace(U − V ). It is immediate that im ι ⊂
kerπ.

Proposition 4.1. The quotient module E1 = ker ι/ imπ is free of rank 2n2 − 2.

Proof. We take as an R-module basis for Mn(R) the elementary matrices: for each
1 ≤ i, j ≤ n, Ei,j is the n× n matrix over R with entry 1 at (i, j) and 0 elsewhere.
Following [BV88, Chapter 2, Section D], kerπ is generated by the following 2n2−1
elements of Mn(R)⊕Mn(R)

• (Ei,j , 0) for 1 ≤ i, j,≤ n and i ̸= j
• (0, Eu,v) for 1 ≤ u, v ≤ n and u ̸= v
• (Ei,i, E1,1) for 1 ≤ i ≤ n
• (0, Ei,i − E1,1) for 1 ≤ i ≤ n

It is clear that im ι is generated by

(In, In) =

n∑
i=1

(Ei,i, E1,1) + (0, Ei,i − E1,1).

Thus, ker ι/ imπ is free of rank 2n2 − 2. □

Equipped with E1, we can now give the full Gulliksen-Negård complex.
Let M ∈ Mn(R) and let MC be the matrix of cofactors of M . Let E3 = R,
E2 = E0 =Mn(R), and E1 = kerψ/ imϕ.
We define the boundary maps as follows: ∂3 : x 7→ xMC , ∂2 : N 7→ (MN,NM),
∂1 : (N1, N2) 7→ N1M −MN2. Finally, we define the augmentation map by ϵ :
N 7→ trace(MCN).

Proposition 4.2 ([BV88, Theorem 2.26]). Let M ∈Mn(R). If In−2(M) is Cohen-
Macaulay, then the sequence

0→ E3
∂3−→ E2

∂2−→ E1
∂1−→ E0

ϵ−→ In−2(M)→ 0
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with modules, boundary maps, and augmentation map defined as above is a free
resolution of In−2(M).

4.2. An explicit Hilbert series. Applying Corollary 2.9, we extract from the
Gulliksen-Negård complex the Hilbert series of In−2(M).

Proposition 4.3. For any n ≥ 3, D ≥ 1, let

Hn,D(t) =

2Dn−3∑
d=D(n−1)

(
n2
(
3 + d−D(n− 1)

3

)
− (2n2 − 2)

(
3 + d−Dn

3

)

+ n2
(
3 + d−D(n+ 1)

3

))
td.

Then the property

HS(I) =

{
true if HI(t) = Hn,D(t)

false otherwise

is (4, n− 2, n,D)-generic.

Proof. By Proposition 3.2, there exists a Zariski open subset UCM ⊆ A4n2

such
that for all a ∈ UCM, In−2(ϕa(A D

n )) is Cohen-Macaulay. Subsequently, by Propo-
sition 4.2, for any a ∈ UCM, the Gulliksen-Negård complex is a free resolution of
In−2(ϕa(A D

n )). In order to apply Corollary 2.9 on the Gulliksen-Negård complex,
we must write, for each 0 ≤ i ≤ 3, Ei =

⊕rk(Ei)
j=1 R(−d

(j)
i ).

First, rk(E0) = n2 and for each 1 ≤ j ≤ n2, the image of ej under ϵ is an (n − 1)-
minor of ϕa(A D

n ). Such a minor is a polynomial of degree D(n − 1), so in order
for ϵ to be graded, ei must be a member of the D(n− 1) graded piece of E0. This
gives d(j)0 = D(n− 1) for all 1 ≤ j ≤ n2.
Next, by Proposition 4.1, rk(E1) = 2n2− 2. Consider the basis elements of E1 from
Proposition 4.1 of the form (Ei,j , 0) for 1 ≤ i, j ≤ n, i ̸= j. These map, under
∂1, to Ei,jϕa(A D

n ). Each nonzero coefficient of Ei,jϕa(A D
n ), written in terms of

the standard basis elements of E0 = Mn(R), is an entry of ϕa(A D
n ), and is thus a

polynomial of degree D. Thus, in order for the map ∂1 : E1 → E0(−D(n − 1)) to
be graded, (Ei,j , 0) must be a member of the Dn graded piece of E1. This gives
d
(1)
1 = Dn. A similar computation for the other basis elements of E1, described in

Proposition 4.1 shows that, in fact, for all 1 ≤ j ≤ 2n2 − 2, d(j)1 = Dn.
By construction, rk(E2) = n2. For any basis element Ei,j of E2, each nonzero
coefficient of ∂2(Ei,j) = (ϕa(A D

n )Ei,j , Ei,jϕa(A D
n )), written in terms of the basis

elements for E1 given in Proposition 4.1 is again an entry of ϕa(A D
n ), and therefore

a polynomial of degree D. In order for ∂2 : E2 → E1(−Dn) to be graded, Ei,j

must then be a member of the D(n + 1) graded piece of E2. This gives, for each
1 ≤ j ≤ n2, d(j)2 = D(n+ 1).
Finally, rk(E3) = 1, and ∂3(1) = ϕa(A D

n )C . When written in terms of the stan-
dard basis of E2 = Mn(R), the nonzero coefficients of ϕa(A D

n )C are precisely the
cofactors of ϕa(A D

n ), which have degree D(n− 1), giving d(1)3 = 2Dn.
Putting these quantities together and applying Corollary 2.9 gives preciselyHn,D(t).

□
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We conclude this section with an auxiliary lemma regarding the structure of the
Hilbert series given in Proposition 4.3 which will be necessary in order to perform
the complexity analyses we give in later sections.

Lemma 4.4. For all n− 1 ≤ d < 2n− 3, hd+1 > hd.

Proof. Taking D = 1 in Proposition 4.3 and simplifying the summand, we find that

hd =
(2 + d− n)(d2 + (−2n+ 4)d+ 4n2 − 4n+ 3)

3
.

Let f(d) = hd and view f as a continuous function in one real variable. Then
f ′′(d) = 2d−2n+4 has its unique root at d = n−2. Thus, f ′(d) attains its minimum
at d = n− 2, and f is therefore strictly increasing on the interval [n− 1,∞). □

5. Reverse lexicographic ideals

Reverse lexicographic ideals have been studied for the special place they hold
amongst all ideals with a given Hilbert function (see e.g. [Dee96]). After recall-
ing their definition in Section 5.1, we prove a general result about the structure of
the grevlex leading monomials in the case of a homogeneous reverse lexicographic
ideal (Proposition 5.3). In Section 5.2, we show that as long as a certain Zariski
open subset that we make explicit is nonempty, this result can be applied to the
determinantal ideals considered in this paper. In the following section, Section 6,
we further investigate when the determinantal ideals that we consider are gener-
ically reverse lexicographic, and relate this property to a conjecture of Goto (see
[Got74]).
Recall that we have fixed our monomial order ≻ to be the graded reverse lexico-
graphic order and suppressed the symbol ≻ from all relevant notation.

5.1. The grevlex staircase of a homogeneous reverse lexicographic ideal.

Definition 5.1. Let I ⊆ R be a nonzero ideal. We call I reverse lexicographic if
for all τ ∈ LM(I),

{σ ∈ Mondeg τ (R) : σ ≻ τ} ⊆ LM(I).

We begin with a simple and helpful observation about the grevlex staircase of a
reverse lexicographic ideal.

Lemma 5.2. Let I ⊆ R be a reverse lexicographic ideal. Let τ ∈ LM(I) and xj
be the smallest variable in τ . For any variable y ∈ {x1, . . . , xk} with y ≻ xj , the
monomial σ = τ

xj
y ∈ Mondeg τ (R) is such that σ ≻ τ and σ ∈ LM(I).

We come now to the main result of this section, which provides a formula to cal-
culate the number of polynomials of degree d + 1 in a grevlex Gröbner basis of a
homogeneous reverse lexicographic ideal whose leading monomials are not divisible
by any leading monomial of degree d.

Proposition 5.3. Let F ⊆ k[x1, . . . , xk] be a sequence of homogeneous polyno-
mials, all of degree d0. Suppose I = ⟨F ⟩ is a reverse lexicographic ideal. Let
HFI(d) = hd be the Hilbert function of I and let D be the largest degree of a poly-
nomial appearing in the reduced grevlex Gröbner basis of F . For any d0 ≤ d ≤ D,
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let Gd be the set of elements of degree at most d in the reduced grevlex Gröbner
basis for F and let ℓd be the largest integer such that(

ℓd + d− 1

ℓd − 1

)
< hd.

Then for any d0 ≤ d ≤ D,

#(LM(Gd+1)∖ LM(Gd)) = hd+1 + (ℓd − k)hd

+

ℓd∑
j=1

(
j + d− 2

j − 1

)
(j − 1)

− ℓd
(
ℓd + d− 1

ℓd − 1

)
Proof. We begin by noting that Gd+1 can be obtained from Gd by multiplying each
of the hd nonzero rows of M̃d by each of the k variables to buildMd+1, echelonizing
to obtain M̃d+1, then discarding zero rows and rows that are redundant because
their leading terms are already divisible by those in LM(Gd). Letting zd+1 (resp.
rd) be the number of these zero (resp. redundant) rows, we can write

(1) #(LM(Gd+1)∖ LM(Gd)) = khd − zd+1 − rd+1.

Note also that if the echelonization process alters the leading term of some row of
Md+1 built in this way, then either that row reduces to zero, or its new leading
term is no longer divisible by any monomial in LM(Gd). Thus, denoting by cd+1

the number of rows of Md+1 which are to be reduced during the echelonization
process, one has

cd+1 = zd+1 +#(LM(Gd+1)∖ LM(Gd))(2)
and rd+1 = khd − cd+1.(3)

Combining Eqs. (1) to (3) gives

#(LM(Gd+1)∖ LM(Gd)) = hd+1 − khd + cd+1.

The rest of the proof consists in computing cd+1. Fix τ ∈ LM(Gd), and let xj be the
grevlex smallest variable in τ . Then by Lemma 5.2, for each of the j − 1 variables
larger than xj , there exists some σ ∈ LM(Gd) such that σxj appears as the leading
term of some row ofMd+1 which can be reduced by a multiple of τ . Thus, the row
of M̃d with leading term τ generates exactly j − 1 rows of Md+1 which are to be
reduced. The number of monomials of degree d whose grevlex smallest variable is
some xj is simply(

j + d− 1

j − 1

)
︸ ︷︷ ︸

number of mono-
mials of degree d
in j variables

−
(
j + d− 2

j − 2

)
︸ ︷︷ ︸

number of mono-
mials of degree d
in j − 1 variables

=

(
j + d− 2

j − 1

)
︸ ︷︷ ︸

number of mono-
mials of degree d
with grevlex small-
est variable xj
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Finally, since the leading monomials of M̃d are simply the hd grevlex largest mono-
mials of degree d, we obtain the final result

#(LM(Gd+1)∖ LM(Gd)) = hd+1 − khd + cd+1

= hd+1 − khd +
ℓd∑
j=1

(
j + d− 2

j − 1

)
(j − 1)

+ ℓd

(
hd −

(
ℓd + d− 1

ℓd − 1

))
= hd+1 + (ℓd − k)hd +

ℓd∑
j=1

(
j + d− 2

j − 1

)
(j − 1)

− ℓd
(
ℓd + d− 1

ℓd − 1

)
. □

5.2. Reverse lexicographic determinantal ideals. With the hope of applying
Proposition 5.3, we investigate here the conditions under which the determinantal
ideals we consider are indeed reverse lexicographic. We begin by showing that
the Macaulay matrices of reverse lexicographic ideals possess a certain structure.
Next, we construct an explicit Zariski open subset whose points correspond to
reverse lexicographic ideals of the form In−2(M). That this Zariski open subset is
nonempty is left as a conjecture, which we give insight into in Section 6.

Lemma 5.4. Let F ⊆ R be a sequence of homogeneous polynomials. Then I = ⟨F ⟩
is a reverse lexicographic ideal if and only if for any d ∈ Z>0, the first hd columns
of the Macaulay matrix in degree d, Md, have rank hd = rk(Md), or equivalently,
the echelonized Macaulay matrix in degree d, M̃d takes the form

M̃d =
(
I X

)
after having removed reductions to zero and up to a permutation of rows, where I
is the identity matrix of size hd × hd.

Proof. Fix d ∈ Z>0. Suppose I is reverse lexicographic, and let

τ0 = min{τ ∈ LM(I) : deg(τ) = d}.

Then τ0 appears as the rightmost pivot of M̃d. Since

{σ ∈ Mond(R) : σ ≻ τ} ⊆ LM(I),

all columns to the left of that indexed by τ0 contain a pivot.
Conversely, suppose M̃d takes the desired form. For any τ ∈ LM(I) of degree d, the
column indexed by τ contains a pivot, and thus belongs to the left identity block.
Thus, any column to the left of that indexed by τ must also contain a pivot. □

We conclude by showing that comaximal determinantal ideals of matrices of linear
forms are reverse lexicographic.

Conjecture 5.5. Let RL be the property defined by

RL(I) =

{
true if I is reverse lexicographic
false otherwise

.

Then for any n ≥ 3, RL is (4, n− 2, n, 1)-generic.
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By Lemma 5.4, it is sufficient to prove that there exists some Zariski open subset
U ⊆ A4n2

such that for all a ∈ U , for any d ∈ Z>0, the reduced Macaulay matrix
M̃d(Fn−2(ϕa(A 1

n ))) takes the form

M̃d(Fn−2(ϕa(A
1
n ))) =

(
I X

)
after a suitable row permutation and removal of reductions to zero. Recall that the
notation used here was introduced in Section 3.
By Proposition 4.3, there exists a Zariski open subset UHS ⊆ A4n2

such that for all
a ∈ UHS, the Hilbert series of In−2(ϕa(A 1

n )) is the one given in Proposition 4.3.
For any d ∈ Z>0, let hd = HFIn−2(ϕa(A 1

n ))(d).
Now fix some d ∈ Z>0, n − 1 ≤ d ≤ 2n − 3. The determinant of the square
submatrix of the Macaulay matrix M̃d(Fn−2(A 1

n )) given by the first hd columns
after removing zero rows is a polynomial in a, gd(a) ∈ k[a].
The distinguished Zariski open set A4n2 ∖ V (gd(a)) consists precisely of those a ∈
A4n2

such that
M̃d(Fn−2(A

1
n )) =

(
I X

)
.

By [FSS13, Corollary 19], there exists a Zariski open subset O ⊆ A4n2

such that
the largest degree Macaulay matrix which needs to be reduced is M2n−3. Thus,
letting

URL = O ∩ UHS ∩
2n−3⋂
d=n−1

(
A4n2

∖ Vk(gd(a))
)
,

for any a ∈ URL, the ideal In−2(ϕa(A 1
n )) is reverse lexicographic.

It is not clear, however, that the set URL is nonempty. Equivalently, it is not clear
that the polynomials gd(a) ∈ k[a] are nonzero.
In [Par10, Theorem 3] (see also the references therein), necessary and sufficient
conditions are given in order for a given power series to be the Hilbert series of a
reverse lexicographic ideal. By Lemma 4.4, these assumptions are satisfied by the
Hilbert series given in Proposition 4.3.
In the following section, we relate Conjecture 5.5 to the Lefschetz properties (see
[HMM+13b]), and give a connection between Conjecture 5.5 and a conjecture of
Goto (see [Got74]).

6. Determinantal ideals and the Lefschetz properties

We devote this section to exploring conditions under which determinantal ideals
possess the so-called Lefschetz properties, in the hope of shedding some light on
Conjecture 5.5. These properties have been widely studied in various contexts,
notably that of Artinian Gorenstein algebras.
This section is entirely self-contained, and for ease of exposition we do not provide
definitions of several classical properties from commutative algebra (e.g. Artinian,
Gorenstein). Such definitions and a wealth of related facts can be found, e.g., in
[Mat87].

Definition 6.1 ([HMM+13b, Definitions 3.1 and 3.8]). Let A =
⊕c

d=0Ad be a
graded Artinian k-algebra with Ac ̸= 0. The algebra A has the weak Lefschetz
property, or simply WLP if there exists some ℓ ∈ A1 such that for all 0 ≤ d ≤ c−1,
the map of k-vector spaces

×ℓ : Ad → Ad+1
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given by multiplication by ℓ has full rank. Such an ℓ is called a weak Lefschetz
element. If, in addition, for all 0 ≤ d ≤ c− 1 and 1 ≤ s ≤ c− d, the map

×ℓs : Ad → Ad+s

has full rank, then A is said to have the strong Lefschetz property, or simply SLP,
and ℓ is called a strong Lefschetz element.

A natural generalization is the t-Lefschetz property.

Definition 6.2 ([HMM+13a, Definition 6.1]). Let A =
⊕c

d=0Ad be a graded Ar-
tinian k-algebra. For some t ≥ 1, A has the t-WLP (resp. t-SLP) if there are some
ℓ1, . . . , ℓt ∈ A1 such that ℓ1 is a weak (resp. strong) Lefschetz element for A and,
for each 1 < i ≤ t, the linear form ℓi is a weak (resp. strong) Lefschetz element for
A/(ℓ1, . . . , ℓi−1).

When A is an Artinian ideal of a polynomial ring over k, the notion of the t-SLP
has useful description in terms of the Hilbert series of A.

Proposition 6.3 ([HMM+13a, Remark 6.11]). Let I ⊆ R be a graded Artinian
ideal. Then ℓ is a Lefschetz element for R/I if and only if for all s ≥ 1,

HFR/(I+⟨ℓs⟩)(d) = max{HFR/I(d)−HFR/I(d− s), 0}.

If I ⊆ R is an Artinian ideal, then R/I has dimension zero. Thus, there is some D
such that for all d > D, HFR/I(d) = 0. Clearly, one can restrict to s ≤ D in the
above proposition.

Theorem 6.4 ([HMM+13a, Corollary 6.30]). Let I ⊆ k[x1, x2, x3, x4] be a graded
Artinian ideal such that R/I has the 2-SLP. Then the generic initial ideal gin(I) of
I with respect to the grevlex order is the unique weakly reverse lexicographic ideal
with Hilbert function HFR/I .

To establish Conjecture 5.5, it is therefore sufficient to prove, in our setting, that
the 2-SLP is (4, n−2, n, 1)-generic. On the other hand, while it would not establish
Conjecture 5.5, it would still be useful to discern whether or not the WLP is (4, n−
2, n, 1)-generic.

Theorem 6.5 ([MMR03, Remark 4.4]). Let I ⊆ k[x1, . . . , xk] be a graded ideal. If
I is Artinian and has no generator in degree 1, and if the quotientR/I is Gorenstein
and compressed with even socle degree, then R/I has the weak Lefschetz property.

The socle degree of a zero-dimensional ideal I ⊆ k[x1, . . . , xk] is simply the degree
of its Hilbert series, which is a polynomial. In this context, to be compressed simply
means that HFR/I(d) = HFR(d) for all 0 ≤ d ≤ s

2 , where s = deg(HR/I(t)) is the
socle degree of R/I.
By [FSS13, Theorem 10], the property of being zero-dimensional is (4, n − 2, n, 1)-
generic, thus so is the property of being Artinian.
As soon as n ≥ 3, the 2-minors of M are of degree at least 2 and generate In−2(M).
Again by [FSS13, Theorem 10], the property thatR/I has socle degree exactly 2n−2
is (4, n− 2, n, 1)-generic.
If M is a matrix of linear forms the degree of the (n − 1)-minors of M is n − 1.
Thus, the property that R/I is compressed is also (4, n− 2, n, 1)-generic.
What remains is to establish that the property of being Gorenstein is (4, n−2, n, 1)-
generic. This is not so clear, and is in fact directly related to a conjecture due to
Goto:
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Conjecture 6.6 ([Got74]). Let k[x11, . . . , xpq] be a polynomial ring over a field in
pq indeterminates, with q ≥ p. Let X be the p × q matrix whose (i, j)-th entry is
xij . Then k[x11, . . . , xpq]/Ir+1 (X) is Gorenstein if and only if (q − p)r = 0.

Since we work with square matrices, the condition that (q − p)r = 0 in Goto’s
conjecture is satisfied. So, if true, Goto’s conjecture would establish that the de-
terminantal ring of n− 1 minors of the generic n× n matrix is Gorenstein.

7. A signature-based Gröbner basis algorithm for In−2(M)

We describe here the algorithm DetGB, an altered version of the F5 algorithm
from [GNSED23], which given a matrix M of linear forms over R computes the
reduced grevlex Gröbner basis for In−2(M). It is precisely this algorithm which
we analyze in the subsequent section. In contrast to the standard matrix-F5 algo-
rithm (see [Fau02] and [BFS15]), the algorithm which we analyze does not compute
Gröbner bases for subsequences of the input sequence. However, as in the matrix-F5

algorithm, the algorithm described below does compute the Gröbner basis degree
by degree.

7.1. A signature-based Gröbner basis algorithm for modules. We begin
by describing an algorithm (Algorithm 1) which, given a set F of homogeneous
elements (all of the same degree) of the free module Rm, a monomial order ≻ on
R, a subset Z ⊆ LM≻TOP(Syz(F)), and a degree bound D, computes the reduced
D-≻TOP-Gröbner basis of ⟨F⟩ while avoiding those reductions to zero which arise
from the leading monomials given by Z.

Algorithm 1 ModGB(F,≻, Z,D)

Input: A collection of homogeneous module elements F = {f1, . . . , fs} ⊆ Rm all
of degree d0, a monomial order ≻ on R, a subset Z ⊆ LM≻TOP(Syz(F)), and a
degree bound D.

Output: The reduced D-Gröbner basis of the module ⟨F⟩ with respect to the
module order TOP≻.

1: for i ∈ [1, . . . , s] do
2: Md0 ← concatenate fi toMd0 with signature (i, 1)

3: M̃d0 ← rref(Md0)

4: G← rows(M̃d0)
5: for d ∈ [d0 + 1, . . . , D] do
6: for g ∈ rows(M̃d−1) do
7: (i, τ)← sgn(g)
8: for j ∈ maxk{xk | τ} do
9: if xkτei /∈ Z then

10: Md ← concatenate xkg to Md with signature (i, xkτ)

11: M̃d ← rref(M̃d)
12: G← G ∪ rows(Md)

13: return G

In Algorithm 1, rref(Md) is the reduced row echelon form of a Macaulay matrix
Md, and rows(M̃d) is the set of rows of M̃d, interpreted as elements of Rm.
The algorithm works by building Macaulay matrices in various degrees for the mod-
ule ⟨f1, . . . , fs⟩. It then echelonizes these Macaulay matrices using a general-purpose
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echelon form algorithm. From these echelonized matrices, it extracts polynomials
whose leading terms do not belong to the ideal generated by the leading terms of
the intermediate Gröbner basis computed. Algorithm 1 uses the additional data of
leading terms of syzygies (the input Z) to avoid adding to the Macaulay matrix rows
which are known to reduce to zero upon echelonization. Furthermore, it builds the
Macaulay matrix Md from M̃d−1 rather than from the original system f1, . . . , fs
since in doing so, a portion of Md will already be echelonized. It is precisely by
exploiting this specific structure ofMd that we arrive at sharp complexity analyses
in Section 8.
The termination and correctness of Algorithm 1 follow essentially from Theorem 2.4.
A detailed proof can be found in [BFS15, Theorem 9].

Remark 7.1. When m = 1, Algorithm 1 is essentially just Lazard’s algorithm
(see [Laz83]), with the additional input of a set of precomputed syzygies. Given
this, the standard matrix-F5 algorithm is recovered as a very slight alteration to
Algorithm 1 by updating the set Z with the leading monomials of the matrices M̃d

along the way.

7.2. The DetGB algorithm. Using Algorithm 1 combined with syzygy informa-
tion from the Gulliksen-Negård complex leads to Algorithm 2 (see also [GNSED23,
Algorithm 3]) to compute Gröbner bases for the determinantal ideals considered in
this paper.

Algorithm 2 DetGB(M)

Input: An n× n matrix M of homogeneous linear forms in four variables.
Output: The reduced grevlex Gröbner basis for In−2(M).
1: S2 ← a set of generators for Syz2(Fn−2(M)) computed using the Gulliksen-

Negård complex.
2: S1 ← a set of generators for Syz(Fn−2(M)) computed using the Gulliksen-

Negård complex.
3: L2 ←ModGB(S2, grevlex, ∅, n− 3)
4: L1 ←ModGB(S1, grevlex,LM≻TOP(L2), n− 2)
5: return ModGB(Fn−2(M), grevlex,LM≻TOP(L1), 2n− 3)

The termination and correctness of Algorithm 2 is proven in [GNSED23, Proposi-
tion 21].

Remark 7.2. If In−2(M) is not Cohen-Macaulay, the Gulliksen-Negård complex
need not be a free resolution for In−2(M). However, it is still a complex. Thus,
the syzygy modules of In−2(M) contain, possibly properly, the modules computed
from the Gulliksen-Negård complex. It is for this reason that we do not need to
assume any genericity properties in order for Algorithm 2 to be correct.
See [GNSED23, Remarks 10 and 20] for a more detailed discussion.

Remark 7.3. The image of the standard basis elements of E0 under the augmenta-
tion map ϵ in the Gulliksen-Negård complex are actually the cofactors of order n−1
of M , not the minors of order n− 1. Computing the images of the boundary maps
in the Gulliksen-Negård complex therefore gives syzygy modules for the cofactors
of order n− 1, rather than the minors, as we would like. This can be corrected by
simply replacing Fn−2(M) with the cofactors of order n− 1 of M in Algorithm 2.
Alternatively, we can easily turn the syzygies of the cofactors obtained from the
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Gulliksen-Negård complex into syzygies of the minors, as explained in the proof of
[GNSED23, Theorem 9].

8. Complexity analysis

We consider a matrix of the form M = ϕa(A 1
n ), where a is taken to be a point

in some suitable Zariski open subset of A4n2

. We make precise which Zariski open
subsets we must take a to lie in below, appealing to the various genericity statements
we have established above (e.g. Propositions 3.2 and 4.3 and Conjecture 5.5). Our
complexity analysis begins by computing the number of polynomials of each degree
in the reduced grevlex Gröbner basis of In−2(M).
The coefficient of td in the Hilbert series of In−2(M) is, by definition, the dimension
of the k-vector space of homogeneous polynomials in In−2(M) of degree d. This
dimension is also precisely the rank of the Macaulay matrix of Fn−2(M) in degree d.
Combining these ranks with the aforementioned count of polynomials of degree d in
the reduced grevlex Gröbner basis of In−2(M) allows us to compute tight bounds
on the complexity of the overall Gröbner basis computation using fast linear algebra
techniques.
Following the standard for complexity bounds, we use the Bachmann-Landau no-
tation O(·) (see e.g. [CLRS22, Section 3.1]).

8.1. Bounding #(LM(Gd+1) ∖ LM(Gd)). The work of computing the number of
polynomials of degree d in the reduced grevlex Gröbner basis for In−2(M) is al-
ready accomplished by our analysis of staircases of reverse lexicographic ideals in
Section 5. The following proposition arises from plugging in the relevant quantities
into the formula given in Proposition 5.3.

Proposition 8.1. Suppose Conjecture 5.5 is true. Fix a ∈ URL∩UHS ⊆ A4n2

. Let
M = ϕa(A 1

n ). For any integer n− 1 ≤ d < 2n− 3,

#(LM(Gd+1)∖ LM(Gd)) =
(d− 2n+ 3)(d− 2n+ 2)

2
,

where Gd is the reduced d-Gröbner basis for In−2(M) with respect to the grevlex
order.

Proof. If Conjecture 5.5 is true, then the ideal In−2(M) is reverse lexicographic.
Therefore, we can apply Proposition 5.3. We begin by showing that for all d ≥ n−1,
the integer ℓd is 3. Recall, from the statement of Proposition 5.3, that ℓd is defined
to be the largest integer such that(

ℓd + d− 1

ℓd − 1

)
< hd,

where hd = HFIn−2(M)(d). For any a ∈ UHS, the Hilbert series HIn−2(M)(t) is given
by Proposition 4.3.
First, note that hn−1 = n2 and(

(n− 1) + 2

2

)
=
n2 + n

2
.

Since n > 1, this shows that ℓn−1 ≥ 3. As k = 4, ℓn−1 ≤ 3.
We proceed by induction. Suppose ℓd = 3 for some d ≥ n− 1. Then there must be
at least one monomial τ in which the variable x4 appears in LM(Gd). Subsequently
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for any variable x, xτ ∈ LM(Gd+1) and xτ contains the variable x4 as well, showing
that ℓd+1 = 3.
Finally, applying Proposition 5.3, we obtain

#LM(Gd+1)∖ LM(Gd) = hd+1 − hd +
(
d

1

)
+ 2

(
d+ 1

2

)
− 3

(
d+ 2

2

)
= hd+1 − hd + d+ 2

(
d+ 1

2

)
− 3

(
d+ 2

2

)
=

(d− 2n+ 3)(d− 2n+ 2)

2
. □

8.2. Lower bounds. As a first application of Proposition 8.1, we establish an
exact expression for the size of the reduced grevlex Gröbner basis of ideals of the
form In−2(M) under certain genericity assumptions.

Proposition 8.2. Fix a ∈ URL ⊆ A4n2

. Let M = ϕa(A 1
n ). The total number of

polynomials in the reduced grevlex Gröbner basis for In−2(M) is

#G =
n(n+ 1)(n+ 2)

6
.

Proof. Enumerating the polynomials in the reduced grevlex Gröbner basis for In−2(M)
is equivalent to enumerating the leading monomials of these polynomials. That is,

#G = #LM(Gn−1) +

2n−4∑
d=n−1

#(LM(Gd+1)∖ LM(Gd)).

Using Proposition 8.1,

#G = n2 +

2n−4∑
d=n−1

(d− 2n+ 3)(d− 2n+ 2)

2
=
n(n2 + 3n+ 2)

6
. □

Recall that here, we consider the computation of a dense representation of the
sought Gröbner basis, meaning that all coefficients in k of all elements in this basis
are explicitly computed.
The expression obtained in Proposition 8.2 counts only the leading monomials of
the polynomials in the reduced grevlex Gröbner basis of In−2(M), and not the
smaller monomials in these polynomials. In the following theorem, we compute
— under our genericity assumptions— the number of nonzero coefficients in each
of these polynomials.

Theorem 8.3. Suppose Conjecture 5.5 is true. Fix a ∈ URL ∩ UHS ⊆ A4n2

. Let
M = ϕa(A 1

n ). The number of elements of k in the dense representation of the
reduced grevlex Gröbner basis of In−2(M) is asymptotically bounded from below
by n6.

Proof. Since a ∈ UHS, the Hilbert series of In−2(M) is the one given in Propo-
sition 4.3. Let hd = HFR/In−2(M)(d). The number of monomials appearing in a
degree d polynomial in the reduced grevlex Gröbner basis for In−2(M) is(

3 + d

3

)
− hd + 1.
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Therefore, using Proposition 8.1, we find that the number of nonzero monomials
appearing in the grevlex Gröbner basis for In−2(M) is

N = n2
((

2 + n

3

)
− n2 + 1

)
+

2n−4∑
d=n−1

(d− 2n+ 3)(d− 2n+ 2)

2

((
3 + d

3

)
− hd + 1

)
.

Expanding this gives

N =
1

72
n6 +

13

120
n5 − 4

9
n4 +

13

24
n3 +

31

72
n2 +

7

20
n □

8.3. Upper bounds. For a given degree d > n − 1, Algorithm 2 builds the
Macaulay matrix in degree d by multiplying each row of the Macaulay matrix
in degree d − 1 by each variable, utilizing the signatures attached to each row to
avoid redundancies in rows. The reverse lexicographic property of determinantal
ideals provides the unreduced Macaulay matrix in degree d with a precise structure,
which we analyze to obtain complexity upper bounds.

Proposition 8.4. Suppose Conjecture 5.5 is true. Fix a ∈ URL ⊆ A4n2

. Let M =
ϕa(A 1

n ) and let d ∈ Z>0, n−1 ≤ d < 2n−3. Then after a suitable row permutation,
the unreduced Macaulay matrix Md+1 of In−2(M) built by Algorithm 2 is of the
form (

Td+1 Xd+1

Ad+1 Yd+1

)
where Td+1 is a square upper triangular block of size hd+1 − (d−2n+3)(d−2n+2)

2 and
hd+1 = HFIn−2(M)(d+ 1) is the Hilbert function of In−2(M) evaluated at d+ 1.

Proof. Let G be the reduced grevlex Gröbner basis of In−2(M). We partition the
rows of M̃d+1 into the following two sets

R1 = {f ∈ rows(M̃d+1) : f ∈ G} R2 = {f ∈ rows(M̃d+1) : f /∈ G}.

Let τ = minf∈R2
{LM(f)}. Then there must exist some variable xj such that

τ
xj
∈ LM(G). Fix σ ∈ R1. In Proposition 8.1 it was shown that all monomials

involving x1, x2, x3 appear in LM(Gn−1). Thus, since d + 1 > n − 1, x4 | σ. As
G is a reduced Gröbner basis and σ ∈ LM(G), the monomial σ

x4
is not in LM(G).

Since we assume Conjecture 5.5, this forces τ
xj
≻ σ

x4
. Subsequently, since xj ≻ x4,

we have that τ ≻ σ.
This shows that any monomial of LM(R1) is smaller than τ . On the other hand,
assuming Conjecture 5.5, for any τ ′ ≻ τ , there exists some g ∈ R2 such that
LM(g) = τ ′.
Now for any polynomial g ∈ R2, there exists some h ∈ rows(M̃d) such that
LM(h) | LM(g). Since Algorithm 1 constructs the rows of Md+1 by multiply-
ing the rows of M̃d by suitable variables, we see that there must be a row ofMd+1

with leading monomial precisely LM(g). Thus, the set of rows of Md+1 which,
upon echelonization, are in R2 form a submatrix ofMd+1 of the form(

Td+1 Xd+1

)
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with Td+1 upper triangular. The rows of Td+1 are in bijection with R2, and by
Proposition 8.1, the set R1 has cardinality (d−2n+3)(d−2n+2)

2 . AsMd+1 has exactly
hd+1 rows, we see that Td+1 has hd+1 − (d−2n+3)(d−2n+2)

2 rows. □

By Proposition 8.4, Ad+1 is a matrix with αd+1 = (d−2n+3)(d−2n+2)
2 rows, Td+1 is

a matrix with βd+1 = hd+1 − αd+1 rows, and and Xd+1 is a matrix with γd+1 =(
4+d
3

)
− βd+1 columns. We begin by establishing various useful facts about the

behavior of hd+1, αd+1, βd+1, γd+1.

Lemma 8.5. For all n− 1 < d < 2n− 3, αd+1 < αd.

Proof. Let f(d) = αd and view f as a continuous function in one real variable.
Then f ′(d) = d − 2n + 5

2 has its unique root at d = 2n − 5
2 . Thus, f is strictly

decreasing on the interval
(
−∞, 2n− 5

2

]
. □

Lemma 8.6. For all n− 1 ≤ d < 2n− 3, αd+1 < βd+1.

Proof. In view of Lemmas 4.4 and 8.5, it suffices to show that αn <
hn

2 . We have
αn = n2−3n+2

2 and hn = 2n2 + 2. Thus, hn

2 − αn = n2+3n
2 , which is certainly

positive for n ≥ 3. □

Lemma 8.7. For all n− 1 ≤ d < 2n− 3, αd+1 ≤ γd+1.

Proof. Recall that hd+1 = dimk(In−2(M)d+1). The k-vector space In−2(M)d+1 is a
sub-k vector space of Rd+1. Since dimk(Rd+1) =

(
4+d
3

)
, we have that hd+1 ≤

(
4+d
3

)
.

Finally,

γd+1 =

(
4 + d

3

)
− βd+1

=

(
4 + d

3

)
− hd+1 + αd+1

≥ αd+1

□

Before turning to the complexity of echelonizing a Macaulay matrix in a fixed
degree, we need one final auxiliary lemma regarding the cost of solving several
triangular systems.

Lemma 8.8 (see [DGP04, Lemma 3.1]). Let U ∈ kp×p be an invertible p×p upper
triangular matrix and V ∈ kp×q a p × q matrix. Let C(p, q) be the arithmetic
complexity of computing U−1V using [DGP04, ULeft-TRSM(U, V )]. Then

C(p, q) ∈

{
O(qpω−1) if p ≤ q
O(p2qω−2) if p > q

.

Proof. For p ≤ q, this is precisely the statement of [DGP04, Lemma 3.1]. As-
sume then that p > q. In the following, we denote by Cω the constant associated
to rectangular matrix multiplication with exponent ω. That is, the cost of mul-
tiplying a p × q matrix by a q × s matrix (all with entries in k) is bounded by
Cω min{p, q, s}ω−2 max{pq, ps, qs}. We use the case p ≤ q as a base case for the
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recursion. The complexity in this case is given directly by [DGP04, Lemma 3.1].
That is,

C(p, q) =

{
Cω

2(2ω−2−1)qp
ω−1 if p ≤ q

C(
⌈
p
2

⌉
, q) + C(

⌊
p
2

⌋
, q) + Cωp

2qω−2 otherwise
.

By padding U with an identity block and V with zeroes, we may assume that p
q is

a power of two. Subsequently, we have

C(p, q) =
p

q
C(q, q) + Cωp

2qω−2

log2(
p
q )−1∑

j=0

1

2j

=
Cω

2(2ω−2 − 1)
pqω−1 + 2Cωp

2qω−2

(
1− q

p

)
= 2Cωp

2qω−2 +

(
Cω

2(2ω−2 − 1)
− 2Cω

)
pqω−1

as desired. □

Putting together Lemmas 4.4 and 8.5 to 8.7, we can compute an upper bound on
the cost of echelonizing a Macaulay matrix in a fixed degree.

Proposition 8.9. For any n−1 ≤ d ≤ 2n−3, the number of arithmetic operations
in k required to compute the matrix M̃d+1 fromMd+1 is in

O
(
β2
d+1α

ω−2
d+1 + αω−2

d+1 βd+1γd+1

)
.

Proof. The computation of M̃d+1 fromMd+1 can be broken up into four steps.
Step 1. First, we echelonize the upper block, which is of the form

(
Td+1 Xd+1

)
,

with Td+1 upper triangular. Applying Lemma 8.8, the cost of this step isO(β2
d+1α

ω−2
d+1 )

Step 2. Next, we use the Id+1 block to eliminate Ad+1. The resulting matrix takes
the form (

Id+1 Xd+1

0 Yd+1 −Ad+1Xd+1

)
.

The arithmetic complexity of this step is bounded by the cost of computingAd+1Xd+1.
The matrix Ad+1 has αd+1 rows and βd+1 columns, while Xd+1 has βd+1 rows and
γd+1 columns. By Lemmas 8.6 and 8.7,

min{αd+1, βd+1, γd+1} = αd+1.

Hence, by [Kni95, Section 2.1], the matrix Ad+1Xd+1 can be computed using
O(αω−2

d+1 βd+1γd+1) arithmetic operations in k.
Step 3. Next, we compute the reduced row echelon form of Yd+1 − Ad+1Xd+1

which has αd+1 rows and βd+1 columns. By Lemma 8.6, and using the general
results of [Sto00, Section 2.2] (see also [JPS13, Appendix A]), this can be done
using O(αω−1

d+1 γd+1) operations in k.
Step 4. The matrix after the previous step takes the form(

Id+1 X
(1)
d+1 X

(2)
d+1

0 I(αd+1) Yd+1

)
,

where Xd+1 =
(
X

(1)
d+1 X

(2)
d+1

)
and I(αd+1) is an identity matrix of size αd+1. The

final step of the echelonization process is then to reduce Xd+1 using the identity
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block I(αd+1). The resulting matrix takes the form(
Id+1 0 X

(2)
d+1 −X

(1)
d+1Yd+1

0 I(αd+1) Yd+1

)
.

Similarly to above, the arithmetic complexity of this step is bounded by that of
computing X(1)

d+1Yd+1. The matrix X
(1)
d+1 has βd+1 rows and αd+1 columns, while

the matrix Yd+1 has αd+1 rows and
(
4+d
3

)
−hd+1 columns. Therefore, by the general

bound given in [Kni95, Section 2.1], the number of arithmetic k operations required
to compute the matrix X(1)

d+1Yd+1 is inO
(((

4+d
3

)
− hd+1

)ω−2

αd+1βd+1

)
if αd+1 >

(
4+d
3

)
− hd+1

O
(((

4+d
3

)
− hd+1

)
αω−2
d+1 βd+1

)
otherwise

In the first case,

O

(((
4 + d

3

)
− hd+1

)ω−2

αd+1βd+1

)
⊆ O(αω−1

d+1 βd+1) ⊆ O(αω−2
d+1 βd+1γd+1)

and in the second case, since
(
4+d
3

)
− hd+1 ≥ γd+1,

O

(((
4 + d

3

)
− hd+1

)
αω−2
d+1 βd+1

)
⊆ O(αω−2

d+1 βd+1γd+1)

so the complexity of the second step dominates. □

Our main complexity upper bound, given in the following theorem, is now an easy
consequence of Proposition 8.9.

Theorem 8.10. Fix a ∈ URL ⊆ A4n2

. LetM = ϕa(A 1
n ). The number of arithmetic

operations in k performed by Algorithm 2 when computing the reduced grevlex
Gröbner basis for In−2(M) is in O

(
n2ω+3

)
.

Proof. Note first that all arithmetic operations occur when computing the M̃d from
theMd. Secondly, note that the complexity of the final step of Algorithm 2 bounds
the complexity of the algorithm as a whole, since the number of rows to be reduced
in the Macaulay matrix in degree d for the first (resp. second) syzygy module is
precisely the number of (a priori) reductions to zero encountered inMd+1 (resp. the
Macaulay matrix in degree d+1 of the first syzygy module). Note also thatMn−1

has n2 rows, and
(
n+2
3

)
columns, and is of rank n2. Thus, by [Sto00, Section 2.2]

(see also [JPS13, Appendix A]) the arithmetic complexity of computing M̃n−1 from
Mn−1 is in

O

(
n2ω−2

(
n+ 2

3

))
⊆ O

(
n2ω+1

)
.

It follows, by Proposition 8.9, that the total complexity of computing the reduced
grevlex Gröbner basis for In−2(M) is in O(n2ω+1 + fω(n)), where

fω(n) =

2n−4∑
d=n−1

β2
d+1α

ω−2
d+1 + αω−2

d+1 βd+1γd+1.
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By Lemma 8.5, for all n− 1 ≤ d ≤ 2n− 4, αd+1 ≤ αn < n2, hence

(4) fω(n) ∈ O

(
n2ω−4

2n−4∑
d=n−1

βd+1γd+1 + β2
d+1

)
.

One can verify (e.g. using the Maple computer algebra system [MGH+05]) that
2n−4∑
d=n−1

βd+1γd+1+β
2
d+1 =

619

1260
n7− 341

360
n6− 7

360
n5+

7

36
n4− 169

360
n3− 89

360
n2− 1

420
n.

It follows that fω(n) ∈ O(n2ω+3), which concludes the proof. □

Remark 8.11. The upper bound on Algorithm 2 obtained in Theorem 8.10 is
subquadratic in the size of the dense representation of the output Gröbner basis
obtained in Theorem 8.3.

Remark 8.12. When ω = 2, the bound O(n2ω+3) becomes O(n7), which still
differs from the lower bound on the output size obtained in Theorem 8.3 by a factor
of n. This suggests that there might still be room for improvement upon the bound
obtained in Theorem 8.10. In experiments, when working on input of matrices
of homogeneous linear forms in four variables with coefficients chosen uniformly
at random from some large prime field, one can observe that the submatrices Ad

defined in Proposition 8.4 are sparse. Perhaps by taking into account this sparsity,
a tighter upper bound could be achieved.

8.4. The asymptotic behavior of fω(n). In the proof of Theorem 8.10, only one
upper bound is actually used —the bound αd+1 < n2. We conclude our complex-
ity analysis by presenting precise asymptotics for fω(n) for various ω. Using the
SageMath computer algebra system (see [The22]), we obtain the asymptotic data
in Table 1. It suggests that the asymptotic result fω(n) = O

(
n2ω+3

)
obtained in

Theorem 8.10 is sharp.
Table 1. The asymptotics of fω(n) compared to n2ω+3 for various
2 ≤ ω ≤ 3.

ω fω(n) ∼n→∞ n2ω+3

3 401
18144n

9 n9

2.7 2
7
10 ·76533282553747476335323
2761171875000000000000000 n8.4 n8.4

2.5 29
√
2

10080n
8 n8

2.38 2
19
50 ·3808710545424609640564981876343720387
41658431291580200195312500000000000000 n7.76 n7.76

2 619
1260n

7 n7
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